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Abstract

Since the onset of intracellular voltage recording techniques, additional methods have been developed and
improved upon, such as using voltage-activated dyes, sodium indicators, fluorescent proteins (namely Green
fluorescent protein (GFP)), synthetic and genetically encoded indicators, in conjunction with calcium imag-
ing. These techniques have shown that dendrites are not just simple transmission lines, but are sophisticated
cellular systems with nonlinear multiscale dynamics that evolve over different timescales and are involved
in neural signalling, information processing, along with any underlying computations. Calcium imaging
has been important in this regard, having highlighted how reaction-diffusion processes between calcium,
buffers and other proteins shape neuronal activity, through dynamical interaction and synaptic plasticity,
over different timescales compared to the evolution of electrical signals. To this end, experiments have
shown the involvement of calcium and calcium dependent buffers in the response dynamics of neurons. A
novel participant during morphological studies, using electron microscopy, fluorescence and immunostain-
ing have illustrated that the Endoplasmic Reticulum (ER) (present in the soma and extends into the distal
dendrites) is also a calcium store that can release calcium as puffs through the activation ryanodine recep-
tors into the cytosol of neuronal dendrites. This is called Ca?*-induced Ca?* release (CICR), which have
been implicated in a number of processes, including the occurrence of calcium waves in the presence of a
unsaturated buffer. In this situation, one can observe local changes to the Ca?>* and buffer concentrations in
response to some stimuli, such as the presentation of orientated stationary or moving bars or gratings, in a
selective fashion through the manifestation of a bias in the resulting calcium concentration in space along
the dendrite, that underpins some computation. Studies have shown that Ca?* plays many important roles
in neuronal function and information processing. To better understand the role of Ca**, we constructed a
computational model of a dendrite with a mechanism that describes CICR in the presence of an unsaturated
buffer and study the conditions permitting the occurrence calcium waves and the underlying requirements
of timed inputs from CICR. Modeling the heterogeneity of CICR from the endoplasmic reticulum by using
a formulation that permits essential dynamics to be analyzed. Using a two-pool model calcium dynamics,
we present an analysis of how CICR impacts calcium activity in space in the presence of a calcium buffer
and study the potential conditions supporting the propagation of CICR induced Ca** waves.

Keywords: Endoplasmic reticulum, Calcium ions, Calcium-Induced-Calcium Release mechanism, Two-pool calcium
model.

L. Introduction presentation of some preferred stimuli, neurons

show vigorous responses while to non preferred
stimuli, the responses are markedly weaker or
lacking. The first demonstrated example of selec-
tive neural responses was orientation selectivity

Selective neural responses, such as orientation and
direction selectivity, have been demonstrated in
many published papers that have used different
mammals, such as cat, monkey, and ferret. Upon
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where cortical neurons responded strongly to the
presentation of visual stimuli composed of bars
at some preferred orientation (Blasdel, 1992;
Heggelund & Moors, 1983; Martinez et al., 2002;
Merkulyeva et al., 2025; Murphy & Sillito, 1986;
Scholl et al., 2013; Volgushev et al., 1993), which
was followed by illustrating direction selectivity in
cortical neurons of the early visual cortex (Barlow
et al., 1964; Barlow & Levick, 1965; Bonhoeffer
& Grinvald, 1993; Gizzi et al., 1990; Movshon,
1975).

To this end, the strong selective responses of
retinal ganglion cells were shown to be direction-
selective, responding maximally to stimuli moving
in the cells’ preferred direction (Barlow et al.,
1964; Barlow & Levick, 1965), and can be at-
tributed to the spatial extent of the dendrite and
the timing and patterning of input, as an under-
lying mechanism. For starburst amacrine cells
(SAC) Euler et al. (2002) has further demonstrated
that they are also directional-selective with respect
to their Ca?* response, highlighting that there are
other signals, timescales, and ions that important
for the input selectivity.

The role of Ca®* in neural signalling has been
investigated experimentally and theoretically, for
its involvement in shaping neural responses, uses
as a selective marker/secondary messenger, and
its involvement during learning and memory. To
obtain a better understanding of the impact of Ca*
dynamics on these neural processes and the role of
propagating calcium waves in dendrites (Coombes,
2001; Keizer et al., 1998; Thul et al., 2008) and
the generation of direction-selective responses in
SAC (Bootman et al., 2012; Koizumi & Poznanski,
2019).

Influx of Ca?* into the cytosol of neuronal den-
drites, including those of SACs, occurs through
calcium-dependent ion channels in the membrane,
like the L-Type calcium channel, and by the
calcium-induced activation of ryanodine receptor
(RyRs) in the ER, which leads to the efflux of
Ca®* from the ER to the cytosol. This process of
CICR will consequently induces more RyRs to
open more Ca** channels in the membrane of the
dendrite. This leads to a near continuous release
of Ca?* resulting in an increase the Ca** concen-
tration level until it becomes too high, leading to
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the activation of Ca®* pumps to remove Ca?* from
the cytosol back into the ER or extruded out of the
cell. This underlying mechanism for CICR leads
to Ca®* wave propagation in neuronal dendrites
while subject to a Ca?* buffer. In order to support
this calcium wave along the dendrite, the timing
between CICR events require to be precisely timed
or else the wave will fail to propagate. To analyse
this mechanism and the underlying dynamics
resulting from CICR, a mathematical model of
Ca®* dynamics is presented that is subject to the
effects of a Ca®* buffer. This model is analysed
with a focus on the conditions for supporting the
resultant travelling Ca®* wave in the presence of a
buffer.

2. Methods

This paper presents a mathematical model for a
two-pool CICR mechanism, and solves it using ad-
vanced Green’s function techniques. This is the
crucial step before progressing to the next step,
which is the simulation. In the first step, the con-
struction of an algorithm and mathematical model
for the CICR mechanism will employ a mix of
numerical and analytical approaches. First, we
adopt a simple model that captures the nature of
the CICR mechanism, yet is amenable to analyti-
cal techniques, before progressing to the next step,
which is the analysis of underlying the support of
a calcium wave in the presence of an unsaturated
buffer.

2.1. The two-pool model equations for CICR

We consider a section of dendrite to be a cable
of finite length (£) and extend the CICR two-pool
model of Kuba & Takeshita (1981) and Goldbeter
& Berridge (1990) to involve spatial effects of
Ca®" signalling via diffusion. We assume a
model of calcium induced calcium release (CICR)
where upon increases in [Ca%*]; then so does the
likelihood of release of free Ca** from the ER,
and therefore Ca®* stimulates its own release.
Fig. 1 illustrates a schematic of the two-pool
model of the CICR mechanism incorporating
spatial aspects of Ca®" signalling along a section
of dendrite, which includes as a calcium buffer
dynamics and Ca®" release from the ER via RyR
receptor activation. The (extended) model sets out
to explore spatial aspects of Ca?* signalling along
a cable representing a neuronal dendrite in the
presence of a buffer.
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Figure 1: CICR mechanism operation in a two-pool
model of a section of the dendritic cytoplasm.

Ca® influx if [Ca™*]i>Cr

Cytoplasm

Formally, Fig.1 describes important processes
and dynamics used to describe the two pool
model of CICR, where [Ca?*]; represents the free
intracellular calcium concentration; [CaB] is the
concentration of bound buffer to Ca>"; RyR are
the Ryanodine receptors which are essentially
calcium-gated ion channels located along the
ER that take part in releasing Ca®* into the
cytoplasm of the dendrite; Joump denotes Ca®*
pump responsible for calcium efflux out of the
cytoplasm via a molecular energy based process
involving Adenosine Triphosphate (ATP); Jcicr
represents the calcium puffs/sparks released into
the cytoplasm through the activation of RyRs
along the ER when [Ca?*]; > Cr where Cr is
some threshold Ca?* level for calcium puffs to
oceur ; Jyptake denotes Ca?* efflux from cytoplasm
into the Ca®* sensitive pool; Jyelease is influx of free
Ca®* and Ca?* bound to the buffer from the Ca?*
sensitive pool into the cytoplasm; Jieax(1) is Ca**
influx into the cytoplasm through Ca®>*-dependent
ionic channels; Jieak2) is influx of Ca** bound
from the Ca?* sensitive pool into the cytoplasm.

From Fig. 1, there are two pools inside the cyto-
plasm. The first pool (orange circle) represents the
calcium buffer and the second (red circle) is the
pool representing the endoplasmic reticulum (ER).
As the dendrites intracellular [(Ca?*]; increases,
so does release of free Ca** from the ER, a
nonlinear calcium-dependent process where Ca’*
induces its own further release; this autocatalytic
amplification is called calcium-induced calcium
release (CICR).
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By taking into consideration the processes pre-
sented in Fig. 1, we begin to formulate our model
system by considering the release of Ca?* from in-
tracellular sources, in particular the ER via CICR
mechanism. The dynamics involve interactions
with an internal buffer and Ca?* extrusion pro-
cesses. The starting point of the model is to al-
low one to investigate dynamic changes to Ca*-
dependent excitability, the spatial diffusion dynam-
ics of Ca?*-signalling, and the impact of a buffer
on Ca?* spatial dynamics. For simplicity, we will
assume the diffusion of both calcium and a single
buffer species where Fick’s law applies to a 1D ca-
ble structure where the dynamics of Ca?* diffusion
is given by

8[Ca2+]i_D 82[Ca2+]i
o o2

N .
—P([Ca2+]i)+ZVJCICRH([C612+]i ~ Cr)o (x - x))
j=1

— Buffer + Jieak

where x is the physical position along the cable of
(cm), t is the time in (sec), D¢, is the diffusion
constant of free calcium (ymz/sec), “Buffer”
represents the calcium buffer, [jeax is the leak
Ca** influx, P([Ca®*];) represents a calcium pump
that describes the removal of calcium ions (in
order to maintain Ca?* homeostasis) through an
ATP-driven Ca®* extrusion system, vcicr denotes
the calcium current density through RyR channels
(uM/sec), H is the Heaviside step-function, Ct
is the RyR activation threshold (uM) required
to generate a calcium puff/spark, and 0 is the
Dirac delta function (whose dimensions are the
inverse of its argument). The final term describes
the Ca?*-dependent activation of RyR in the ER
which lead to an increase in cytosolic calcium
via CICR release from the ER, when the calcium
concentration exceeds a threshold Ct. Note that
this process is nonlinear where the shape of the
Ca®* input in time describes by what is called a
spark/puff, whose duration can vary depending
on the local dynamics of Ca?*, individually
modelled as square pulse whose time duration can
vary between release events in a Ca®>*-dependent
manner.

For the buffer, the rate which it binds to calcium
is proportional to the [Ca?*]; and the free buffer
concentrations. The buffer also dissociates from
Ca** at a rate proportional to the concentration of
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the complex. This allows one to write down the
corresponding buffer dynamics as:

JCaM] _ 9?[CaM]
ot Mo

+ f([BlroraL — [CaM])[Ca**];,

— b[CaM]

where f and b are the forward and backward re-
action rates with units yM‘l msec™! and msec™!,
respectively, Dcanv is the diffusion constant for
the calcium bound buffer with units yum?/sec, and
[Bltotar = [CaM]+ [M] is the total concentration
of calcium bound [CaM] and unbound [M] buffer,

respectively.

The extrusion of calcium occurs through high affin-
ity and low capacity ATP-operated Ca’* pumps,
which are assumed to be homogeneously dis-
tributed over the dendritic membrane, and whose
dynamics follows the following Hill-type expres-
sion:

4P, [Ca®*];
KP s
[Ca?*]; + Kp

P(ICa*];) =

where Py, is the membrane pump parameter
(m/sec), Kp (uM) is the pump dissociation constant
and the 4/d is the area-to-volume ratio for a cable
of diameter d (cm). Now assuming Ca** concen-
tration is much lower than the pump dissociation
constant Kp, this is a reasonable approximation.
If a high mobile buffer concentration is present,
permitting these homogeneously distributed pumps
over the dendrite membrane to extrude endogenous
Ca®* in a linear manner. This linear behaviour can
be deduced and follows the following Hill-type ex-
pression:

lim P([Ca2+]i) — y[Ca?*];.

[Ca?*];<<Kp

This has become known as the excess buffer
approximation (EBA), where the assumption of
unsaturability of the Ca®" buffer is likely to be
valid for low Ca?* concentrations or when there is
an excess of available buffer.

Under these conditions, the spatiotemporal dynam-
ics of calcium diffusion within dendrites can be
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rewritten as

2+7. 2 2+17.
a[Caat L Ca8 [acﬁz ]l_(7+f[B]TOTAL)[Ca2+]i
N fIBlrotaL (CaM]
ko
+Z VeerH [Ca2+ CT)(S (x—xj)
2 B
a[c;th] _ CaM& [aCxazM] i ];";)TAL (CaM]
+ f[BlroraLlCa**];. (1)

A solution to the above reaction-diffusion system
can be expressed as an integral equation involving
the Green’s function:

[Ca®]i(x, t) = f f Z ViierGca(¥, C t = 5)

x H([Ca2+]i(C,s) — Cr)5(C - xj) dsd,

where integrating over the spatial variable C leads
to the following integral equation:

H([Ca*" i, ) = Cr)ds  (2)

The Green’s function satisfies the following system
of reaction-diffusion equations,

8[Ca2+]i 82[Ca2+]1-

TR —(7/+f[B]T0TAL)[Ca2+]i
N f [B]];FOTAL (CaM]
0
d[CaM] _ *[CaM]  f[BlroraL
g DeM— g T (M
+ fIBltotaL[Ca*"];. (3)

The Green’s function for our coupled system of
reaction-diffusion Eqn (3) are difficult to find,
but can be obtained via the formal solutions
presented in Hill (1981). These formal solutions
have been obtained by uncoupling the system
Eqn (3) using an affine mapping technique that
involves a Green’s function solution to a non-
linear integro-partial differential equation of the
Riccati type (see section 4, pages 132-157, Lions
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(1971)). Hill presented a general procedure to
obtain closed form representations to the solutions
of a coupled linear reaction-diffusion system
including the corresponding boundary conditions.
The coupled system is formally reduced to two
boundary value problems involving the classical
heat equation, whose solutions are given in terms
of integrals involving the Green’s function of the
heat equation. Note that Hill (1981) illustrated
that this method can also be applied to systems of
non-homogeneous reaction-diffusion systems.

The formal solutions for the Green’s functions for
the system of reaction-diffusion equations given by

Eqgn (3) are

GCa(x/ 7 xj/ t) = e—ﬂtgca(x, xj/ DCat)

e/\t Dcat

—ué

et [
Dca — Dcam Dcamt

£ = Deawtt)?
x {«/E(ﬁ) LnGealt, )

+ bIo(n)%CaM(x, Xj, 5)}&15/

“4)

Geam(,, %, ) = € "Geam(x, i, Dcamt)

e/\t DCat
—u&
o f et
Dca — Dcam Jpe gyt

Deat — & \2
X {\/E(E—CTCaMt) Li(n)%cam(x, xjfé)

+ CIO(T])gCa(x/ xj/ 5)}(151
)

where the constants are given by

[B]
a=(y+ f[Blrorar), b= f+()cm
[B]
¢ = f[BltorarL, 4= jf+(§m
(QDCaM - dDCa) ( a—d )
A= |Bem— ) - (228 )
DCa - DCaM DCa - DCaM
2Vbe 1
N = = [(Dcat - £)(E — Deamt))?
DCa - DCaM

and Iy and I; are the modified Bessel functions.
Note the G, and cam are the Green’s function
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solutions to their corresponding heat equations

9Gca ’Gca
Yo (1) = T (oxt) ©

and

0%ca *Gca
et = ZE (1)

One can calculate the corresponding solutions for
Eqns (6) and (7) via Laplace transform techniques
to arrive at the following expressions for Gc, and
Ycam (see Appendix).

(N

Having determined Gc, (x, Xj, t) and %CaM(x, Xy, t),
one can now focus on developing an efficient so-
lution for the formal solutions of G, (x, X, t) and

GCaM(x, X1, t), respectively. Closer inspection of
the formal solutions given by Eqns (4) & (5), one
notices that it involves a mathematical form with
some similarity to a convolution integral. This can
be better seen by applying the following transfor-
mation of variables,

& = Dcamt + (Dca — Dcam) T
This allows Eqns (4) and (5) to be rewritten as

GCa(x/ ’ xj/ t) = e_utha(x/ xj/ DCat)

t
+E(A—yh1)tfe—yb2’[
0

x {«/ﬁ (%)2 I () Gax, xj, brt + by1)

+ blo(m%Ycam(x, xj, b1t + sz)}dT,

®)

GCaM (x/ s le t) = e_dthaM(xl xj/ DCaMt)

t
4 pA-pbit f o lb2)T
0

1
x { Vbe (t_TT)z () %ean(, X, byt + by7)

+ clo(mGeal(x, xj, bit + sz)}dT,
9)

where by = Dcam, by = Dca — Dcam, and

n=2 Vbe[t(t - T)]%

Observation of Eqns (8) and (9) highlights that the
integral parts represent a generalized convolution
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and show some similarity to the traditional convo-
lution integral and to some extent are also depen-
dent on non-euclidean/deformed warping involv-
ing two time variables. Furthermore, the reader
should not that the argument appearing in the mod-
ified Bessel functions strictly does not a resem-
ble convolution, but a higher-order nonlinear tem-
poral dependence. Unfortunately, there are no
closed-form solutions to the aforementioned equa-
tions thus these integrals need to be calculated nu-
merically. Given this fact, there is a potential ap-
proximation which can be employed that may per-
mit a obtaining a closed-form expression for the
corresponding approximation. Note that in both
Eqgns (8) and (9) one can perform a Taylor ex-
pansion of the corresponding Green’s functions
%CaM(x,xj,blt + bz’[) and %CaM(x,xj, bt + bZT).
This leads to the integral component of Eqn (8) to
be expressed as,

fo ' it s {\/ﬁ(%)é Li(n)x

[o0]

Z blt)" 9”QCa

(x x]/ bZT)

+ bly(n) Z(blt o %aM( ,xj,bz’c)}dr
n=0

noting that the expression for the integral compo-
nent of Eqn (9) takes the following similar form

+blo(n) Y 0ty "Gea %, bzr)}dr

n!  Jdt"

Now keeping the first terms in both Eqns (8) and
),

t
f o~ Hbat
0

X { \/E(é)i Il(T])gCa(xr xj/ sz)

+ blo(m)Ycam(x, xj, bat )}dT,
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and

t
f o Hb2T
0

{ Vo (1) o eate s, b20)

+ blo(mMGea(x, x5, sz)}dT-

then from this truncated series, a closed-form ex-
pression could be obtained for Geam(x, , xj, t) by
using the following identity,

L[fot (%)2 L (a2t =) f(r)dT] -

a\’ a?
— (= —(V+1)F v
(2) ’ (S 45)’
where f(1) = e‘“(DCa‘DCaM)TgCaM(x,xj,bz’c) or
f(1) = e #Pca-Deawr G (x, xj, baT) where appro-

priate, however a closed form expression for the
truncated series for Gca(x, , xj, t)

Pt —1\2
fo (tTT) I (a Vet =) f(0)d
could be calculated analytically, involving a se-
ries representation of the I, resulting in an infi-
nite series that may not be represented by a closed-
form expression, and thus leads to serious concerns
about computation and accuracy. In this case it is
preferable to apply numerical techniques to calcu-
late the generalized integral directly.

3. Results

In order to proceed, the resulting Green’s func-
tions, Gca (x, xj, t) and %CaM(x, X1, t) are calculated
using MATLAB’s inbuilt integral function. In Fig.
2, some examples of these Green’s functions are
presented at various locations, keeping in mind that
these represent the zeroth order for the calcium
[Ca?*]; and buffer [CaM] concentrations, respec-
tively.

3.1. Support for saltatory calcium waves

To explore the properties of saltatory waves and the
conditions that support this, one needs to observe
how the spacing between RyR and their respective
activation times impacts wave propagation. Here,
our calcium system presented in Eqn (1) describes
the evolution of calcium through the assumption
that [Ca®*]; is continuously removed while being
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Figure 2: Example plots of the Green’s function as-
sociated with (A) calcium Gca (x Xj, t) and the (B) cal-
cium buffer Goam (x xj, ) taken at three different dis-
tances from a specific source location x; = 0.5¢

released from discrete sites where the RyR in the
presence of a buffer. Noting that calcium release
from the RyRs are calcium dependent and occurs
when [Ca?*]; reaches some threshold value Cr at
some release site and instantaneously releases a
discrete amount of [Ca®*] into the cytosol of the
dendrite. This mechanism permits the propagation
of a [Ca®"] wave through the sequential puffs
coming from the firing of RyR release sites, each
responding to [Ca®*] diffusing from nearby RyR
release sites, along the direction of the travelling
wave, that can support saltatory propagation and
hence the timing of these events is important for its
propagation, resembling a fire-diffuse-fire process.

Noting that the integral equation, represented by
Eqn (2), describes [Ca?*] evolution through the ac-
tion of the system’s Green’s function and the dis-
crete, yet [Ca®?*]-dependent CICR via the RyRs at
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specific times . One can apply a useful approxi-
mation to Eqn (2) by assuming these puff release
events can be modelled by delta functions, Eqn (2)
can be expressed as

t N ;
[C>* () = fo ) exGealt, 5, £ —5)
]':

X H([Ca2+]i(xj, s) — CT)(S (s - tj) ds,

Now lets consider that the location of RyR are
equally spaced along the ER with a distance be-
tween these release sites of Ax, thus

N

[Ca2+]i(x, t) = GCa(x x]r t])

CICR
j=1

x H([Ca**]i(x;, ) - Cr).

Here, t; is the time where [Ca?*] at position xj first
reaches the threshold value of Cr at the /" RyR re-
lease site. When this occurs, the j site releases a

. . ]
calcium puff of size V.
of the jth depends on the evolution of [Ca®*] con-
centration, and for a single puff from site j the

calcium profile is given by the Green’s function

Gca (x/ Xj, t)>
[Ca2+] (x, 1) =v!

where the dependence

GCa(x x]/ - t])H(t - t])r

CICR

where H is the Heaviside step function and noting
that Gea(x, xj,t — t))H(t — ;) is the solution to our
reaction-diffusion system for an impulse input at
x = xjat £ = t (Hill, 1981). Superimposing the
contribution from each site, we arrive at

N

[Ca>Ti(x,B) = ) vy eGealx, xj, t = H)H(E = ),
j=1

noting that calcium concentration [Ca?*]; is not a
continuous function of time ¢ at any release site ;.
Let’s consider that the amount of [Ca®*] released
at sites ] =M,M-1,... was identical and small,
namely VCICR vcicr and whose activation times
were known and consistent tyg > fyp—1 > .... Now
the next release event at time fyf41 at Xy Occurs
when [Ca®*]; at xpp4q first reaches threshold Cr,
that is,

[Ca™* (M + 1)Ax, ty,,) = Cr,

d -
E[Ca“],((M +1)Ax, ty, ) > 0.
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Now, type1 must satisfies

Cr= Z veicRGea(Xm+1, XM, EM+1 — tm).
<M

Now for a wave to propagate corresponds to the
situation of having #j — £j—1 = 7, where 7 is a con-
stant for all release sites j, that is, each site releases
a [Ca®*] puff at a fixed time after the preceding
release site had released a puff. Therefore a propa-
gating solution exist when ty1—tj = TM + 1 — ),
and 7 is a solution to the following equation satis-
fying,

Cr _ Z Geca((M + DAx, jAx, tM + 1 —3)),
VCICR 4
<M
N

= ECa(Ax, m,T) = é(m, Ax,T,N),

m=1
where ECa (Ax,m, 7) is given by

Gea(Ax,m, 7) =
e " Gca(M + 1)Ax, jAx, Dcatm)

Tm
+ pA=pbr)Tm f o—Hb2p
0

8 {%(Tmp— P)z )

X Gca((M + 1)Ax, jAx, bytm + bap)

+ blo(M)9cam((M + 1)Ax, jAx, bittm + bzp)}dp,

ECa(Axl m, T) =
e "M G* ca(mAx, Deatm)

Tm
+ e(/\—yhl)"cm f e—‘ubzp
0

1

. {%(Tmp— P)2 )

X G* ca(mAx, bytm + byp)

+ blo(M)G* cam(mAx, bytm + bzp)}dp,

where 1 = 2 Vbc[p(tm — p)]V2, m = (M +1) — j

Gca((M + 1)Ax, jAx, bytm + byp)
= G ca((M + 1) = j)Ax, bytm + byp)
= G* ca(mAx, bytm + byp),
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where G*c,(mAx, bytm + byp) is expressed in
terms of the form

g*Ca (I’VZAX, Tm)
1 [ pm=2nNP AL/ (

- Vanitm

Fig. 2 is a plot of é(m, Ax,T,N), where we have
used the parameters listed in Table 1 (see Ap-
pendix).

41m) 4 similar terms]

(A)
60 T
—Ax=0.5
—Ax=0.1
. 40 L AX = 001
= —Ax = 0.001
=
o))
= g0
0 i
0 0.5 1
T %1073
5 (B)
1 x10 '
—Ax=0.5
—Ax =0.1
Ax =0.01
= — Ax = 0.001
I05
()
©
0 x i
0 20 40 60
gA:c(7_>

Figure 3: Plots of (A) Ga,(7) and the delay (B) T for
several values of Ax. Note that some of profiles in (A)
are monotonically decreasing but the others have maxi-
mal values.

The plots of Fig. 3A are presented for several
values of Ax, in particular, for some values
of Ax, the function éAx(T) is not monotone
increasing, but has a maximal EAX value, say
émaX(Ax), which is a concave function of Ax
(data not shown). Note that, EAX(T) - B,
where f has some finite value as 7 — 0, but
éAx(’c) — (0 as T — co. Now for the condition that
Cr/vcicr > émaX(Ax) then propagation failure
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is expected, but if Cr/vcicR < Gumax(AY), then
a physical solution is expected, corresponding to
the time when [Ca?*] first crosses the threshold Cr.

For larger values of 7, the function ?max(Ax) has
a concave profile (data not shown) and potentially
agrees with the function exp(—Ax). This gives us
an approximate criterion for propagation failure,
that is when Ct/vcicr > exp(—Ax), the saltatory
wave fails to propagate, but keeping in mind
that both calcium and buffer diffusion constants
influence this criterion.

For Fig. (3B), we have plotted the delay T as a
function of Ct/vcicr (?AX(T)) by reversing the
axes in Fig. 3A. Note that with T # 0 one expects
the propagation of the wave to fail at some positive
velocity. Thus, when the distance between release
sites, or the threshold is too large, or the amount
of vcicr calcium released is not sufficient, then
propagation fails.

In Fig. 4, we have plotted the buffer function
H ax(7) and its corresponding delay 7 in a similar
manner as ém(”[) using the constants presented in
Tablel (see Appendix). Here, in Fig. 4A presents
curves that monotonically increasing, where each
tend towards to some maximum or finite asymp-
totic value. The plots from Fig. 3-4, are also indi-
cating the potential for saltatory buffer waves could
be present while calcium waves have failed.

4. Discussion

Analytical solutions of reaction-diffusion systems
have not attracted as much attention due to the
difficulty in solving such systems, especially
when there are nonlinearities present; in favour
of numerical approaches based on sacrificing
continuity with a chain of discrete isopotential
compartments connected to each other like a
chain (D’Angelo & Jirsa, 2022; Neymotin et al.,
2015). These compartments are a consequence
of the discretization process applied to reaction-
diffusion systems resulting in an approximation
based on connected isopotential compartments,
that facilitates the reaction-diffusion system to
be recast into a system of ordinary differential
equations, permitting numerical solutions to be
calculated. Over the preceding decades, this has
been the tool of choice, where biological realism is
typically associated with morphologically detailed
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Figure 4: Plots of (A) Hax(t) and the delay (B) ©
for several values of Ax. Note that some of profiles in
(A) are monotonically decreasing but the others have
maximal values.

compartmental models (Bhalla, 2012; Bower &
Beeman, 1998; Hines & Carnevale, 1997; Holmes
& Rall, 1992; Kobayashi et al., 2021; Lindsay
et al., 2007).

Here, we have returned to investigate the question
of finding analytical solutions of reaction-diffusion
systems and its importance for the underlying
reaction-diffusion dynamics of the calcium sys-
tem. Hill’s solution (Hill, 1981) is a notable
example to explore, although derived as a formal
solution we have developed simulations using
Hill’s equation, but this required numerical inte-
gration to evaluate the generalized convolution
appearing the Eqns (8) and (9). Unfortunately, an
analytical solution was currently not possible to
derive, although we have provided some interest-
ing avenues that need to be studied. We have also
taken the first steps to investigate the conditions for
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supporting the propagation of saltatory waves. We
adapted the method presented in Keener (2000);
Keener & Sneyd (1998); Keizer et al. (1998) to
use Hill’s solution Hill (1981) and observed the
same qualitative trends compared to these older
studies where the distance between RyR release
sites decreases supports the propagation of the
saltatory wave.

In future, various analysis techniques, including
homogenization and analysis of travelling waves
need to be applied in a way that explicitly in-
cludes buffer dynamics, in order to better under-
stand how the reaction-diffusion dynamics of cal-
cium and buffers influence each other in general
and when waves have been generated. This pro-
vides insights into the general behaviour and dy-
namics of such (reaction-diffusion) systems when
describing the dynamics and processes involved
with the introduction of proteins to the intracellu-
lar domain of dendrites and how these can be used
to understand experimental procedures and the ob-
served results, as well as how the spatiotemporal
nature of these injected proteins impacts neural re-
sponses, including their influence on relevant cel-
lular processes such as synaptic plasticity.

Conflicts of interest:
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Appendix

Here, the solutions to the corresponding heat equa-
tions for both calcium and the calcium buffer are
presented, where the Green’s function for calcium
Gea (x, xj,t) and the calcium buffer ¥, (x, xj,t)
are given by the solution to the following bound-
ary value problem:

G-
TG (1,x,) 5 (- ) ot - 1)
for t> ¢t
%9 0,0,1) = 292 ¢,0,1) = 0
and
agCaM( 1 t) 3
ot N7
82ggCaM

—(x, Xy, t) + 6(x - xl)é(t - tk)

for t >ty
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99cam
ox

99cam
ox

(0,0,¢) = (¢61)=0,

where the length of the cable is £, with sealed-end
boundary conditions at both ends subject to
impulse inputs at point x; along the cable. One
can solve these equations using either separation
of variables (whose solution converges rapidly
for large t) or Laplace transform methods whose
solutions converge rapidly for all £.

There are two sort after solutions, one where there
is an unit impulse at the boundary x = O and t = 0
and the other is where the impulse occurs at any
position along the cable at x = x; at time { = #;.
The solution corresponding to the response to a
unit impulse at x = 0 and ¢ = 0. In the case for
calcium Gca(x, 0, t) for a finite cable with a sealed-
end boundary condition, 2G¢ca (0,0,) = —6(t) at

ox
x = 0 and a sealed-end condition %(& 0,t)=0

at x = ¢, several representations for the Green’s
function converges for small t (Tuckwell, 1988) for
this case, solving the case when the impulse oc-
curs at the boundary x = 0 and the above men-
tioned boundary value for x = 0, the corresponding
Green’s functions Gca(x, 0, t) is

l (]
a(x,0;t) = -1)"
Gealx, 0;1) @Z‘J( >{

[2(n + 1) — x]?
- At )

+ [2n€ + x] exp (__[2715 +af? )} ,

[2(n + 1)¢ — x] exp(

4t
t>0.0<x< ¢

Analogously, the corresponding Green’s function
for the buffer heat equation is Ycqv is given by

Geam(, 0;1) = \/%Z(—n“{
T~ =0

[2(n + 1)¢ — x)?
- 4t )

+ [2nl + x] exp (_—[an + )} ,

[2(n + 1)¢ — x] exp(

4¢
t>0.0<x<?.

Now the Green’s function for unit impulses occur-
ring along the cable Gca(x, x;; £ — ;) is the solution
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to the following,

agCa o
at (x/xl/t)_

(x, x;;t) + 0(x — x))0(t — t1), t>1t,

with the following sealed-end boundary conditions
at x = 0, agca(O xi;t) = 0 and at x = ¢
ag a(¢,x;,t) = 0. Using these initial and boundary

ondltlons and applying both Laplace and inverse
Laplace transforms, and series expansions leads to

Fcalx,xi;t —t;) =

4(t — 1)
+exp (_ (x +x; + 271{’)2)

4(t — 1)
N exp( (x +x; —2(n+ 1)5)2)

4(t - 1)
(x —x; + 2(n + 1))?
+ exp( T )}
forx<xjandt > t;
and

(x —x; + 2(n + 1))?
4(t - 1) )
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(x —x; = 2(n + 1)¢)?
4(t - 1) ’

forx>x;and t > ¢.

Combining the cases for x < x; and x > x; leads to
the following Green’s function,

Gealx, xi;t — 1) =

{TCa(x/ xi;t — t)H(x; — x)

+ Healxi, x; £ — t;)H(x — xi)}H(f - t),
t>t, 0<x,x <.

Similarly for the calcium buffer, the corresponding
Green’s function is given by

Geam(x, xj;t — 1) =

{9CaM(X, xi;t — t)H(x; — x)

+ Acam(xi, x; t — t)H(x — xi)}H(t —-t),
t>t, 0<x,x<¢,
where

Feam(x, xi;t — 1) =

1 o0
— (—1)"{
Nre=dd
(x = x; = 2n0)*
“p ( E
(x + x; + 2nt)?
+exp ( 05 )
(x +x; = 2(n + 1)£)?
+exp( el )
(x —x; + 2(n + 1)£)?
. exp( 20 )}

forx<xjand t >
and

Jeam(x, xi;t — 1) =

WZ( 1)"{

(x — x; — 2nt)?
exp (_ A(t—t)
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Table 1: Table of constants

Notation Description Quantity
[Ca*]; Intracellular calcium concentration (uM) where M = mol /L
[Ca**], Extracellular calcium concentration at rest (uM) 2000uM
t Time (msec)
X Physical distance along dendrite (um)
Dca Diffusion constant of free calcium (um?/msec) 0.23 um? /msec
Cr Channel activation threshold (uM) 0.5 uM
VCICR Calcium source current density (uM/msec) 0.0027 uM/msec
P Pump rate (um/msec) 0.2 um/msec
d Diameter of dendrite (um) 2 um
[BlroraL = [CaM] + [M] Total concentration of calcium binding (uM) 100 uM

[CaM] Concentration of bound buffer (M)
[M] Concentration of unbound buffer (uM)
f Forward reaction rate (uMmsec)™! 0.320 (uM)~*(msec)™!
b Backward reaction rate (msec)”! 0.06 (msec)™!
Kp =b/f Dissociation constant (M) 0.20 (uM)
Dcam Diffusion constant of buffered calcium (um?/msec) 0.13 pm?/msec
ko = [BlrotaL/Kp Buffer capacity (dimensionless) 500
y = 41’7‘“ Constant parameter (msec)™" 0.4 (msec)™!
4 Physical length along the dendrite (um) 100 um
O[] Dirac delta function (inverse dimension of its argument)
HI[] Heaviside step-function (dimensionless)
X; Position of calcium sources (um1)
N Number of calcium RyR hotspots (dimensionless) 0-20

N B (x + x; + 2nt)?
x At —h)
N B (x — x; + 2nt)?
R TS
(x — x; — 2nt)?
—exp _4(t—_ti) ’
(x +x; = 2(n + 1)0)?
+exp(— el )
(x —x; +2(n + 1))?
+exp(— 20 )
(x —x; + 2(n + 1))?
+exp (— 05 )
(x —x; = 2(n + 1)0)?
~ exp (— s )}
forx > x;and t > ¢;.
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