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Abstract

Neuroscience began an important new chapter in the 1980s when it was demonstrated that the induction of cFos occurred in
response to the stimulation of acetylcholine receptors in neuron like cells. Transcription of cfos commenced within minutes
and involved an influx of extracellular Ca?* through voltage-sensitive calcium channels. Neuronal activity in many neuron
types and brain regions led to the induction of many genes on various time scales. The first to be activated were called
immediate early genes (IEGs), which include the Fos family cfos, fosB, fral, fra2, and several isoforms. A short form of fosB
called AFosB resisted degradation and was thought to play a role in inducing changes in neurons associated with addiction.
The protein products of many IEGs act as transcription factors which are important in neurons of the central nervous system
for their roles in neuronal plasticity, exemplified by learning and memory, addiction and several neuropsychiatric disorders
such as depression. In this article experimental data and the biochemical processes underlying the pathways which lead to such

transcription are described as a prelude to modeling.
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1. Introduction

Addictions to drugs and other stimulatory agents
constitute enormous medical and social problems.
According to Nielsen (2012) there were over 20 million
people in the USA classified as substance abusers
including over 1 million people addicted to cocaine,
350,000 addicted to heroin, over 1 million prescription
opiate abusers and over 17 million people were alcoholics.
These data translate to an incidence of about 1 in 15
individuals who are addicted to various drugs but there are
also serious behavioral addictions, such as those involving
the primary reinforcers food and sex, with numbers which
are hard to estimate. Addiction to all forms of electronic
or digital media is self-evident, especially the seemingly
obsessive use of smartphones.

The neurobiological foundations of such addictions have
been the focus of many laboratories for the last few
decades. It has become clear that the links between
neuronal activity and the expression of many genes in
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various regions of the brain contribute to the development
of an addictive state (for example, Berke and Hyman,
2000; Cruz et al., 2015; Gajewski et al, 2016; Hyman
and Malenka, 2001; Koskela et al., 2017; Nestler, 1992,
1997, 2001a,b, 2004a,b, 2014; Renthal and Nestler,
2009; Robison and Nestler, 2011). Heller et al. (2014)
succinctly stated that chronic drug abuse regulates
transcription factors, chromatin-modifying enzymes and
histone posttranslational modifications in discrete brain
regions. Furthermore, such genetic activation leads to
morphological changes in neurons including alterations
in spine densities and properties, mainly studied in the
medium spiny neurons of the nucleus accumbens (for
example, Anderson & Self, 2017; Cahill et al., 2016;
Dos Santos et al., 2017; Grueter et al., 2013; Khibnik et
al., 2016; Robinson and Kolb, 2004). Such
morphological changes may have roles in the
development of brain circuits for addictive behavior (for
example, Anderson & Self, 2017; Grueter et al., 2013;
Nestler, 2001a, 2001b, 20044, 2013, Russo et al., 2010).
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1.1 Animportant new chapter in Neuroscience

An important new chapter in Neuroscience began in the
1980s and early 1990s. Greenberg et al. (1986b)
demonstrated the neurotransmitter mediated induction of
cFos in response to stimulation of acetylcholine receptors
in PC12 cells. Transcription of cfos commenced within
minutes and required an influx of extracellular Ca?
through voltage-sensitive calcium channels. It was soon
discovered that neuronal activity or its associated
processes in many neuron types and brain regions led to
the induction of many genes on various time scales
(Morgan & Curran, 1986; Dragunow et al., 1987;
Morgan et al., 1987; Sonnenberg et al, 1989; Winston et
al., 1990; Young et al., 1991). The first to be activated,
often within 20 minutes or sooner, were called
immediate early genes (IEGs), which include, inter alia,
the Fos family cfos, fosB, fral, fra2, and several
isoforms, and the Jun family cjun, junB and junD. The
protein products of many IEGs re-enter the nucleus and
act as transcription factors for many other less rapidly
induced genes. It has been demonstrated that many
IEGs are important in neurons of the central nervous
system for their roles in instigating paths to neuronal
plasticity (Hughes & Dragunow, 1995) exemplified by
learning and memory and as seen above, addiction. In
addition, they have been implicated in neuropsychiatric
disorders such as depression (Nestler, 2015a; Gajewski
etal., 2016) and in both the benefits and deleterious side
effects of drugs used to treat schizophrenia (Robertson,
1995).

With many acute stimuli, such as those that result from
psychostimulants such as cocaine and amphetamines or
electroconvulsive seizures, their activation was for the
most part transient, including that of the shortened form
of fosB called AfosB which arises from alternative
splicing (Black, 2003; Marinescu et al., 2007; Alibhai
etal. 2007) whose protein product has a molecular mass
of 33 kDa. However, under chronic stimulus
application, modified forms of AFosB of 35-37 kDa per-
sisted for much longer time periods and were
hypothesized to lead, inter alia, to structural changes in
neuronal morphology. Such changes in neurons of
several brain regions with various regimes of cocaine
administration were detailed in Maze & Russo (2010).

There are many brain regions in which the expression of
AFosB has been demonstrated. Nestler et al. (1999)
listed several regions, including prefrontal cortex,
hippocampus, LC and striatum, in which chronic
cocaine, amphetamines, nicotine, opiates, ECS,
antidepressants, antipsychotics and stress may give rise
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to AfosB induction; Perrotti et al. (2008) and Nestler
(2008) documented the relative strengths of
expression of AFosB in many regions with chronic
application of cocaine, morphine, A°-THC (the
psychostimulant component of marijuana) and ethanol;
and Pitchers et al. (2010) tabulated many brain regions
where AfosB expression arises in relation to sexual
experience. The roles of AFosB in prefrontal cortex and
hippocampus in addiction and depression have recently
been investigated by Gajewski et al. (2016). Related
articles on AFosB and psychiatric disorders are those of
Vialou et al. (2010), concerned with stress resilience
and mechanisms of antidepressants, Robison et al.
(2014) on mechanisms of antidepressants and Vialou
et al. (2014) on the role of AFosB in stress and
depression.

In this article the main focus is the stimuli that lead to
the activation of signaling pathways and the
subsequent activation of transcription factors with the
resulting production of mRNA and protein.
Anatomically most of the results discussed pertain to
the striatum, particularly the nucleus accumbens which
along with the VTA is considered an important
component of the brain reward system (Nestler,
2004a). There are many stimuli apart from the broadly
defined neuronal activity, which result in such
activation, including neurotransmitters, synaptic
activation, electrical stimulation or depolarization by
for example potassium ions, drugs including prescribed
medications and drugs of abuse which can lead to
addiction, substances which are natural rewards such as
food, water and sex as well as stress and debilitating
mood changes such as depression. Learning and
memory processes also lead to such genetic activation
and subsequent morphological changes in neurons as
do LTP and LTD (Russo et al., 2010).

There is a large degree of overlap in the molecular
underpinnings of the biochemical pathways involved in
transcription induced by diverse stimuli including
neuronal activity, drug stimuli, natural rewards,
LTP/LTD, learning and memory processes, stress and
mood. In most of these the main cell membrane elements
activated are dopamine and glutamate receptors as well
as voltage sensitive Ca?* channels. The most frequently
investigated brain regions are the striatum and the
hippocampus, both of which have been explored in
relation to LTP/LTD. Some interesting general
principles have emerged as described clearly by
Nakano et al. (2010) who developed a mathematical
model of some signaling pathways in MSN including the
regulatory protein DARPP-32 (see subsequent section).
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For example, cortico-striatal stimulation of MSNs
leads to LTD with only glutamatergic inputs, which
lead to Ca?* influx, but may lead to LTP if there is
accompanying dopaminegic input. However, if the
Ca?* input is strong enough by itself it may lead to
LTP so that there are two modes of LTP - glutamate
(Ca?*) augmented by dopamine and Ca?* alone. The
main element involved in the plasticity and included in
Nakano et al. (2010) model here is phosphorylated
AMPA receptors which are inserted in the postsynaptic
membrane resulting is a greater conductance. LTP at
hippocampal to prefrontal cortex glutamatergic
synapses exhibits similar properties with dopamine
release from terminals arising from the VTA (Jay et al.,
2004).

Most of the present article concerns signaling pathways in
MSNs which have different components from those of
hippocampal neurons (West et al., 2002; Deisseroth et

al., 2003) in that dopamine receptors are absent in the
latter. Nevertheless, there are sometimes depicted
connections from VTA to striatum as in Berton &
Nestler (2006) and (Cooper et al. 2003, Figure 9.1).
Another difference is that DARPP-32 is abundant in
MSNs but practically absent in hippocampus and other
brain regions (Walaas et al., 2011; Yger & Girault,
2011).

1.2 Fos family

The emphasis in the experimental results examined in
this article is on the IEG family Fos. Table 1 lists the
molecular masses of the most commonly studied Fos
family proteins from a sample of studies.

The induction of Fos family genes has been studied
guantitatively in several brain areas with various

Table 1: Molecular masses in kDa of Fos family proteins

Protein Molecular masses (Expt.) Mean  Sources
cFos 52, 55, 58 55 a, b c
FosB 46-48, 45, 46, 45 4575 a, b,cd
Fral, Fra2 41, 41, (42, 40), 41 41 a, bcd
AFosB 33,33 33 a,c
AFosB%® 35 35 a, C
AFosB¥ 37 37 a, C

a, Perrotti et al. (2004); b, Hiroi et al. (1998); c, Chen et al. (1997); d, Nye et al. (1995)

means of elicitation, including the application of
psychostimulants such as cocaine, amphetamine and
cafeine, and electrical stimuli such as electroconvulsive
therapy. The brain regions most frequently studied are
the prefrontal cortex, hippocampus and the basal ganglia
which contain the dorsal striatum (caudate nucleus and
putamen) and the ventral striatum consisting of the nu-
cleus accumbens and the olfactory tubercle. Subsidiary,
but not less important, elements are globus pallidus,
ventral pallidum, substantia nigra and subthalamic
nucleus.

The striatal regions contain mainly GABA-ergic medium
spiny neurons (MSN, also called striatal projection
neurons or SPN) which receive dopaminergic inputs
from the midbrain structures of the substantia nigra
pars compacta and the ventral tegmental area as well
as glutamatergic inputs from the prefrontal cortex
(McGeorge & Faull, 1989; Cummings, 1993), thalamus
(Berendse &  Groeneweg, 1990), amygdala
(McDonald, 1991) and hippocampus (Kelley &
Domesick, 1982; Floresco et al., 2001). According to
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Surmeier et al. (2007) about 40% of these
glutamatergic afferents come from each of the
prefrontal cortex and the thalamus. At the MSNs, the
synapses of glutamatergic inputs occur on the spine
heads whereas dopaminergic inputs are positioned on
the spine necks (Yager et al., 2015). MSNs also receive
cholinergic inputs and GABA inputs from
interneuronal sources. Kreitzer (2009) contains a
review of MSN properties.

Many anatomical maps have been published over the
last twenty or so years which depict connections
involving striatal neurons in both human and rodent
brains. Although they have features in common, they
have different emphasis depending on whether they are
focused on addiction, LTP/LTD/reward or mood,
especially depression. The anatomical arrangement of
the brain circuits pertaining to the investigations of
interest and the main connecting structures are depicted
for a human brain in Figure 1, which is taken from
Treadway & Zalb (2011). Diagrams for circuits involved
in mood, including depression, usually include the
serotonergic connections from the dorsal raphe
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— GABA
« Maesolimbic DA
Mesocortical DA
—— Nigrostriatal DA

Figure 1 Showing the basic anatomical components of the human brain involved with the MSNs of the
striatum. In these neurons, for example, application of psychostimulants, leads to activation of
neurotransmitter receptors, which may cause signaling cascades via second messengers. Such signaling may
give rise to cytoplasmic activation at synapses and subnuclear transcription of IEGs and other genes involved
in long term synaptic plasticity and other morphological changes. Elements indicated: Prefrontal cortex,
caudate nucleus and putamen (Caud/Put), ventral pallidum (VP), nucleus accumbens (NAcc), ventral
tegmental area/substantia nigra pars compacta (VTA/SN), hippocampus (Hipp), amygdala (Amyg). From

Treadway & Kalb (2011).

nucleus and noradrenergic connections from the locus
ceruleus - as in Nestler etal. (2002), Berton & Nestler
(2006) and Nestler (2015b). Serotonin receptors on
MSN and their input synapses also play a role in L-
dopa induced dyskinesia (Picconi et al., 2018).
Diagrams showing circuitry most important for drug
addiction, with varying degrees of detail for rat brain,
are given in Koob et al. (1992), Nestler (2004a),
Koob & Nestler, (1997), Nestler (2001a) and Yager et
al., (2015). Similar diagrams depicting reward
circuits involving the NAc and VTA are those of
Robison & Nestler (2011) and Russo & Nestler
(2013). In summary these diagrams mainly show
GABAergic afferents from MSNs in the striatum,
glutamatergic  afferents from frontal cortex,
amygdala, hippocampus and dopaminergic afferents
from VTA/SNc. The map of Yager et al. (2015)
shows clearly the separate functions of SNpc and
SNpr in relation to the direct and indirect pathways
from striatum to Gpi/SNpr (see subsequent sections).
There are a few details in Figure 1 which need some
elucidation: the olfactory tubercle which is part of
the ventral striatum is not shown in its location just
ventral to the nucleus accumbens (Xiong & Wesson,
2016) nor is the thalamus included; also, the ventral
tegmental area and the substantia nigra pars compacta
are not shown as distinct regions.
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2. Signaling pathways and the cfos and
fosB promoters

In many experiments mRNA is measured, often in
addition to protein. The basal levels of Fos family
proteins are often reported to be low, especially cFos
(Herrera & Robertson, 1996). Basal levels of
AFosB* and AFosB*” (sometimes called chronic
Fras), however, exhibit regional differences and may
be quite high in some brain regions, including NAc
and striatum (Hope et al., 1994b; Vialou et al., 2012)
but low in frontal cortex (Chen et al., 1995; Ulery et
al., 2006) and even lower in thalamus and
hypothalamus. The high levels in NAc and striatum
indicate that AFosB may accumulate under normal
physiological conditions and not just as the result of
extreme stimulation as occurs with psychostimulants
or ECS. Interestingly, in mice, Vialou et al., (2010)
discovered that such basal levels in the NAc predict
initial vulnerability to social defeat stress, and
further, that the degree of AFosB induction in
response to chronic stress determines how well an
individual will cope with that stress. The
observation of lower levels of AFosB in the NAc of
depressed humans indicates that these findings for
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Figure 2 Schematic of the principal elements of the cfos promoter. From Kovacs (1998).

mice could be relevant to theories of clinical
depression. For a more detailed description see Nestler
(2015a).

Although the basal levels of the IEG cFos expression
are usually relatively low (Morgan et al., 1987), cfos is
rapidly activated in MSNs of the NAc by many acute
stimuli including seizure and psychostimulant drugs
such as amphetamine and cocaine (Sonnenberg et al.,
1989; Graybiel et al., 1990; Young et al., 1991; Hope
etal., 1992; Hope et al., 1994a, b).

Transcription of a gene, the process whereby messenger
RNA is assembled according to code from DNA, is
effected by the setting up of the transcription
machinery and the binding of transcription factors to
elements within a gene’s promoter. Knowledge and
understanding of the structure and function of the cfos
promoter have increased greatly since those early
discoveries. Cruz et al. (2015) review many aspects of
cfos transcription; early descriptions were reviewed in
Schuermann (1994).

The four principal elements of the cfos promoter are as
follows and are schematically shown in Figure 2
which is adapted from Kovacs (1998) and Sng et al.
(2004). The latter reference also depicts the structure
of the cjun promoter.

(1) The SIE (sis-inducible element) which s
activated by growth factors such as PDGF.

(2) The SRE (serum response element) which is
activated by serum, growth factors and Ca?*

(3) The AP-1 site to which bind dimers of proteins
such as fos/jun

(4) The Ca/CRE (Ca?* /CAMP response element)
which is activated by Ca?* or cAMP. This is
usually abbreviated to CRE.

For more details of the structure of elements of the

cfos promoter, (see Gius et al., 1990; Metz & Ziff,
1991; Ghosh et al., 1994; Cochran, 1995; Robertson
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et al., 1995; Sharrocks & Shore, 1995; Johnson et al.,
1997; Hipskind & Bilbe, 1998; Kovacs, 1998;
Hyman et al., 2006 and Hong & Ping, 2009).

The depiction of the cfos promoter in Figure 2 omits
the details of the actual geometric relation between the
promoter elements and DNA structure, none of which
are described in the references of the previous
paragraph. The DNA structure involves nucleosomes
which are groups of histone proteins about which DNA
is wrapped. These are further described in subsequent
sections and exemplified in their relation to cfos
promoter elements in the Figures 3C and 3D. The
chemical states of the histone proteins play essential
roles in the instigation and termination of transcription
(Mahadevan et al., 1991; Tsankova et al., 2004,
Tsankova et al., 2007; O’Donnell et al., 2012).

The fosB and cfos promoters are located on different
chromosomes, being on chromosomes 7 and 12,
respectively, in mouse (Lazo et al., 1992) but they have
similar structures and are both activated rapidly by the
same acute stimuli. The appearance of FosB protein
lags that of cFos and in the acute case is usually shown
as being of less magnitude (Hope et al, 1994a; Nestler,
2004b).

2.1 Intracellular components

Ca?* enters the cytoplasm of MSNs as a consequence
of activation of NMDA receptors by glutamatergic
inputs from several regions including the PFC,
hippocampus and amygdala (Grace et al., 2007) as well
as through L-type Ca?* channels. ERK activation plays
a major role in IEG transcription (Sgambato et al.,
1998; Brami-Cherrier et al., 2009). If the level of
intracellular Ca?* is high enough, which may include
contributions from internal stores, ERK-dependent
activation of cfos occurs via the phosphorylation of
Elk1 which binds with SRF to the SRE and through
phosphorylation of CREB which binds to the CRE.
Flavell & Greenberg (2008) cite evidence that EIk1
phosphorylation by ERK is critical for glutamate
mediated cfos activation.
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Activated ERK is translocated to the nucleus within 10
minutes of cocaine injection (Valjent et al., 2000).
Contributions to CREB phosphorylation may also
come from the CaMK pathway and it has been found
(see figure in Tuckwell, 2019) in hippocampal cells
that these arise more rapidly than those from the
ERK/MAPK pathway (Wu et al., 2001; Cruz et al.,
2015). Furthermore, it was found, in transgenic mice,
that maximal activation of cfos in vivo requires
cooperation among several elements on the cfos
promoter, including SRE, the rarely mentioned SIE (see
for example Hipskind & Bilbe, 1998), the AP-1 binding
element, and CRE (Robertson et al., 1995; Bito et al.,
1997).

Interestingly, calcium from different sources may
activate distinct signaling pathways. For example,
activation of L-type Ca?* channels lead to SRE- or
CRE-dependent transcription, whereas activation of
NMDA receptors leads primarily to SRE-dependent
transcription (Ghosh et al., 1994). In fact, calcium
increases which lead to CREB binding to the CRE
have been claimed to be preferentially originating from
L-type Ca®* channels (Bading et al., 1993;
Hardingham et al., 1997). The latter are claimed by
Rajadhyaksha et al. (1999) to be in fact necessary for
glutamate-mediated CREB phosphorylation and cfos
transcription in striatal neurons, as activated NMDA
receptors give rise to sodium currents which depolarize
the L-type Ca?* channels.

Simplified schemes of the molecular events, called
signaling pathways, leading to cfos and other IEG

A

Extracellular

‘ NMDAR

Intracellular

transcription in NAc MSN, are shown in Figure 3, A-
D, taken respectively from Hyman et al., (2006), Cruz
etal., (2015), Brami-Cherrier et al. (2005) and Brami-
Cherrier et al. (2009). Three of these, A-C, show the
D1 dopamine receptor and the NMDA glutamate
receptor whose activation results in signaling pathways
which lead to the activation of elements on the cfos
promoter. Shown in all four diagrams are the elements
SRE and the CRE which are mostly responsible for the
induction of IEGs in striatal MSNs. An AP-1 element
is shown only in 3A and in addition pathways leading
to the modification of histones are shown in 3C and
3D.

Figure 3A is based on earlier diagrams in Berke &
Hyman (2000) and Hyman & Malenka (2001). Similar
versions of these signaling pathways and promoter
elements are described in McClung & Nestler (2008),
Matamales & Girault (2011), Cruz et al. (2013) and
Cadet (2016).

The role of cAMP activation of the CRE indicated in
Figures 3A and 3C is controversial. Cruz et al. (2013)
cite evidence (Mattson et al.,, 2005) that cfos
expression is not mediated by the cAMP pathway. In
a later article, Mattson et al. (2007) point out that this
is especially the case in neurons containing D2 receptors
whose  stimulation  actually  reduces  cAMP
concentrations. However, conclusions such as these
may be specific for certain stimuli and cell types. The
topic is discussed fully in the sequel.
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Figure 3 Four simplified schemes, A-D showing various signaling pathways which lead to activation, as the
result of psychostimulants or ECS, of elements of the cfos promoter as well as some histone modifications (see
subsequent section) in MSNs of the striatum and nucleus accumbens. In A the three promoter elements SRE,
AP-1 and CRE are shown, whereas in the remaining schemes only the SRE and CRE are indicated. A,
adapted from Hyman et al., 2006. There are two types of receptor, a D1 dopamine receptor and an NMDA
glutamate receptor giving rise to three paths to activation of the CRE. (1)D1-AC-cAMP-Protein kinase A (PKA)
which phosphorylates CREB on Serl33 (Hipskind and Bilbe, 1998), enabling the recruitment of the transcription
factor CREB binding protein (CBP) discussed further subsequently. (2) NMDA-Ca?*-phosphorylated ERK
which in turn activates RSK, discussed fully in Brami-Cherrier et al. (2009), enabling it to phosphorylate CREB.
(3) NMDA-Ca?* -CaM-the kinase CaMKIV which phosphorylates CREB. There is one path shown which leads
to activation of the SRE element, being NMDA-Ca?* - phosphorylated ERK which in turn phosphorylates Elk1
which binds to an SRF dimer and activates the SRE. B, adapted from Cruz et al., 2015. As in A there is an
NMDA receptor which when activated gives rise to Ca?* entry but an additional source of Ca* comes from
the voltage sensitive L-type calcium channels. Dopamine plays a potentiating role at the NMDA receptors. In
the cytoplasm Ca?* activates a Ras/Raf/MEKK pathway which leads to phosporylated ERK. As in A EIK1 is
activated and leads to transcription at the SRE element whereas ERK also activates RSK to give rise to
transcription at the CRE. C, adapted from Brami-Cherrier et al., 2005. As in A D1 dopamine receptor
stimulation leads to PKA and NMDA glutamate stimulation gives rise to Ca?* influx both resulting in the
sequential phosphorylation of MEK and ERK in the cytoplasm followed in the nucleus by the facilitation of
transcription due to phosphorylation of histone H3 and activation of CREB at the CRE. Dyn =
preproddynorphin, Pol Il = RNA polymerase. D, adapted from Brami-Cherrier et al., 2009. Only the final
steps of paths are shown. ERK is shown phosphorylating EIk1 to activate the SRE. ERK also activates MSK1
which phosphorylates CREB to activate the CRE. In addition, MSK1 phosphorylates histone H3 at Ser10 which
facilitates transcription and histone H4 is hyperacetylated. TFIID takes part in the transcriptional process
with RNA Pol II.
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2.2 Neuronal activity and transcription

That neurotransmitters could lead to gene transcription
in PC12 neuron-like cells was already mentioned in the
Introduction. It was reported a few years later that
depolarization of these cells led to cfos induction
mediated by Ca?* at the CRE (Sheng et al., 1990).
Morgan & Curran (1991) contains a table listing nearly
20 kinds of stimuli that elicit cfos induction in the
mammalian nervous system.

Later experiments on dorsal root ganglion neurons
(Sheng et al., 1993; Fields et al., 1997) showed that
electrical stimulation including action potentials
resulted in cfos expression. These studies
investigated the role of the temporal characteristics
of increases in intracellular Ca?* and found that a key
variable was the time between bursts of action
potentials. Large, sustained increases in intracellular
Ca®** produced minimal cfos expression. IEG
activation was inversely related to the burst intervals
of action potentials.

Maximal induction of cfos expression required the
activation of both the MAP kinase pathway and
CREB phosphorylation. Brief, frequently repeated
bursts can induce such coordinated activation of MAP
kinase and CREB to induce expression of cfos. The
relation between spike train properties and the
degree of cfos induction is discussed in a subsequent
section. A recent study extended the analysis of the
relationship between the pattern of action potentials
to the induction of hundreds of genes (Lee et al.,
2017).

Rises in intracellular Ca?* in hippocampal neurons
had long been posited to mediate cfos transcription
after activation of glutamate receptors or voltage-
sensitive Ca?* channels (Lerca et al., 1992; Labiner
et al., 1993). Indeed, synaptic activity has been
considered as a likely primary factor in cfos
expression (Cruzetal., 2013; Sgambato et al., 1997),
which is reminiscent of the suggestion that synaptic
potentials are equally or more important than action
potentials in information processing (Tuckwell,
2000). Dolmetsch et al. (1998) investigated the
effects of the properties of Ca?* oscillations on the
induction of several genes in non-neuronal cells. Of
particular interest from this study are the results,
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shown here in Figure 4, showing a logistic type
dependence of gene expression on intracellular
steady state Ca?* concentration with a half-maximal
value at about 270 nM and saturating at about 525
nM.
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Figure 4 Dependence of expression of three
reporter genes in T cells on steady state
intracellular Ca?* concentration. Adapted from
Dolmetsch et al. (1998).

West etal. (2002) discuss in detail many aspects of the
important roles that Ca* and its various channel types
play in the transcription of cfos and other IEGs in
neurons. Flavell & Greenberg (2008) review the
signal transduction pathways whereby neuronal
activity regulates gene expression through increases in
intracellular Ca?*. Such pathways involve not only
the CRE but also the SRE.

3. Experimental results on induction of Fos family
genes

This section contains a brief summary of some of the
results of measurements of Fos family proteins and
MRNAS in response to various stimuli, with emphasis
on pschostimulants such as cocaine and amphetamine
and ECS. There have been a very large number of
such experiments since the late 1980s and especially
since the discovery of the important role of AFosB as
a transcription factor (Dobrzanski et al., 1991;
Nakabeppu & Nathans, 1991; Yen et al., 1991).

3.1 Induction of Fos family mRNAs

Since the 1980s, very many studies have been made
on various types of cell, both neuronal and
nonneuronal, with a variety of agents and stimuli that
induce the expression of Fos-family genes. We are
mainly concerned here with representative results for
cfos mMRNA and the mRNAs for fosB and AfosB.
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3.1.1  Measurements of c-fos mMRNA

According to Morgan & Curran (1991), several kinds
of stimuli including some associated with neuronal
activity give rise to the transient induction of cfos
mRNA with almost identical time courses.
Transcriptional activation occurs within 5 minutes and
continues for 15-30 minutes. The level of mRNA
reaches maximum values at 30-60 minutes post-
stimulation and then declines with a half-life of about
15-30 minutes (Greenberg et al, 1985; Mitchell et al.,
1986).

There are only a few articles that give line-graphs for
cfos mMRNA as most reports show the results in the
form of Northern blots or bar-graphs. We illustrate
firstly two line-graph results as shown in Figure 5.
Figure 5A, taken from Moratalla et al. (1993), shows
the level of cfos mRNA in rat striatum up to 6 hours
after intraperitoneal injection of cocaine (25 mg/kg).
The cfos MNRA level has a maximum at about 60 min
and has returned to near baseline values by 2 hours.
Similar results were obtained for junB. It was also
found that cjun was not induced and that junD was
constitutively expressed.

In Figure 5B, taken from Bading et al. (1995), is
shown the time course of cfos mRNA in cultured
neonatal hippocampal neurons after treatment with 10
MM glutamate. Transcription of cfos was detected 15
min after glutamate stimulation. The maximum level
was attained 30-60 min after stimulation with an
increase of about 60-fold, followed by a return to basal
levels within 4 hours. In this experiment cjun and junB
were also found to be transcriptionally activated. It
was found that in this preparation the entry of Ca?*
through NMDA receptors and not L-type Ca?*
channels was a key element in the induction of cfos
expression.

The time course of cfos MRNA has been reported in
several other experiments, some of which are here listed
in chronological order in an abbreviated form: Chang
etal. (1988), morphine, caudate- putamen; Sonnenberg
et al. (1989), brain and hippocampus in response to
seizure; Winston et al. (1990), cerebral cortex,
successive ECS, a second stimulus did not evoke cfos
MRNA expression at 4 hours but did after 18 hours
suggesting a refractoriness for 10-14 hours; Cole et al.
(1990), ECS hippocampus; Steiner & Gerfen (1993),
cocaine, striatum, relation of cfos induction to
dynorphin levels; Konradi et al. (1996), amphetamine,
striatum. roles of NMDA receptors and Ca?*; Badiani et
al. (1999), amphetamine, cfos only in D1-containing
MSNs in striatum, but in D2-containing MSNs as well
with novelty stimulus; Kumar et al. (2005), cocaine,
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striatum, study of histone modifications; Mattson et al.
(2007), amphetamine, nucleus accumbens; Renthal et
al., (2008), amphetamine, acute and chronic, striatum.
In addition, in the study by Alibhai et al. (2007) the
time courses of the mRNAs of cfos, fosB and AfosB
were reported as described in the next subsection.

3.1.2 Measurements of fosB and AfosB mRNA

Several measurements have also been made for the
mMRNAs of fosB and AfosB. Some representative results
in which line graphs were available are shown in
Figure 6. Figure 6A, from Alibhai et al. (2007),
shows the amounts (in folds relative to saline) of these
two mRNAs in the first 12 hours after amphetamine
was administered to rats intraperitoneally (4mg/kg).
fosB mRNA reached a maximum of about 3 to 4 fold
at about 1 hour. The amount of AfosB mRNA reaches
a much higher relative level at around 10 fold in about
3 hours. Both isoforms return to basal levels at close
to 12 hours. In Figure 6B, also from Alibhai et al.
(2007), the levels are shown for the seventh day of
amphetamine injection. Here the fosB mRNA is fairly
constant at a level of roughly 2-fold and the AfosB
MRNA level reaches a peak of about 3 fold at about 3
hours and then steadily declines to near basal levels.
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Figure 5 Some early results for cfos mRNA. A. cfos
expression in the striatum in response to cocaine.
Adapted from Moratalla et al. (1993). B. Expression of
cfos in cultured hippocampal neurons after treatment
with glutamate, normalized to the level of mRNA of the
constitutively expressed GAPDH gene. Adapted from
Bading et al. (1995).
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The results in Figure 6C, from Chen et al.
(1995), being the first in vivo set, were obtained
by ECS applied to rats with measurements in
cerebral cortex. These have a somewhat different
character from those in Figures 6A and 6B as the
level of fosB mRNA rises rapidly to a peak of over
0.8 units in about 30 minutes and declines
somewhat less rapidly to attain basal levels after
about 8 hours. The accumulation of AfosB mRNA
is also rapid, achieving a maximum level of 0.5
units at 30 minutes and declining to basal levels
after about 4 hours. Thus in this example the level
of fosB mRNA is relatively greater than that of
AfosB mRNA, and especially so for the first 4
hours.

In Figure 6D are shown mRNA levels for the
fosB and AfosB in cultured PC12 cells after
application of serum. In this case the time courses
for the two mRNAs are similar, with a maximum at
about 2 hours and a return to basal levels at 12
hours. Here the maximum for AfosB is about 15%
above that for fosB. However, these observations
are based on a sparsity of points.
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Larson et al. (2010) examined mRNA and protein
levels for cFos, FosB and AFosB for rats
administered cocaine according to various
procedures and schedules. Measurements were
made for NAc shell and core and CPu. For the
group that self-administered with cocaine on day
18 only, the approximate mRNA levels (folds) at
the end of the day were, for NAc shell, core and
CPu respectively: AfosB, 13, 12, 15 and fosB, 9,
4 and 4. For the measurements 24 hours later,
the approximate readings were AfosB, 2.5, 1.5,
<1 and for fosB, 1, 1, 1. Thus, at all of these
time points and locations the level of AfosB mMRNA
was greater than that for fosB mRNA and the level
in NAc shell was greater than in NAc core.

In a related experiment, Damez et al. (2012)
determined that chronic cocaine administration,
followed by extended withdrawal, increases
subsequent inducibility of fosB and AfosB in NAc
but not CPu. At 28 days after either no cocaine for
days 1 to 10 or cocaine on days 1 to 10, cocaine
was administered. At 45, 90 and 180 minutes the
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Figure 6 Some experimental results for the measurement of fosB and AfosB mRNAs. A. Induction of these
mRNAs by acute amphetamine in rat striatal neurons. B. Corresponding results after once daily injection of
ampetamine for 7 days. C. Acute induction in rat cerebral cortex by ECS. D. Induction by application of
serum to cultured PC12 cells. A and B adapted from Alibhai et al. (2007); C adapted from Chen et al.

(1995); and D adapted from Carle et al. (2007).
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levels of AfosB mRNA in NAc were always larger
than those for fosB, for both the naive and
experienced groups. Furthermore, the mRNA levels
of both fosB and AfosB were larger in the
experienced group showing a priming effect.

In Alibhai et al. (2007) is also reported an interesting
set of MRNA measurements showing values for cfos,
fosB and AfosB at various times over a 7day period
with daily amphetamine injection.

These have been plotted in Figure 7. In this
preparation the relative level of AfosB mRNA is
nearly always greater, and in the first day much
greater, than that of fosB. For AfosB the level of
MRNA is always greater at 3 hours than at 1 hour
and (as expected) also greater at 3 hours than 24
hours. On days 1 and 3 the level of fosB mRNA
decreases from hour 1 to hour 3 to hour 24, but on
days 5 and 7 it is slightly greater at hour 3 than at
hour 1. The overall trend of each mRNA level is
down from day 1 to 7 at corresponding time points,
but there are exceptions to this.

The same is true for the cfos MRNA levels for which
in Alibhai et al. (2007) there is only a result for 1
hour. Each cfos result is probably near the maximum
for cfos on each of days 1, 3, 5 and 7, these values
always being above the corresponding values for
fosB but below the corresponding values for AfosB.

A few other articles reporting fosB and AfosB
MRNA are as follows with cell types and stimuli:
Nakabeppu & Nathans (1991), cultured mouse 3T3
cells, serum and hippocampus, ECS; Dobrzanski et
al. (1991), cultured cells, serum; Inoue et al. (2004),
bone (osteoblasts), mechanical stress.

Noteworthy was the finding by Nakabeppu &
Nathans (1991) that the relative levels of fosB and
AfosB mRNA were about equal which differs from
most of the above findings where AfosB mRNA was
relatively more and sometimes much more
abundant. Nakabeppu & Nathans (1991) stated that
the alternative splicing mechanism, which involves
competition between PTB1 and U2AF at the FosB
promoter, was very efficient. Based on the data
reported in several works from the Nestler laboratory
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Figure 7 Some experimental results for the measurement of cfos, fosB and AfosB mRNASs in rat striatal
neurons, redrawn from Alibhai et al. (2007). Here, induction of these mMRNAs was by once daily injection
of ampetamine for 7 days. Measurements for fosB and AfosB are given at 1, 3 and 24 hours. cfos
readings at 1 hour only, probably due to its mRNA being at a very low level after a few hours.
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it could be said in these experiments, mainly on NAc
with cocaine or amphetamine, that there is a
tendency for much more of the spliced product,
AfosB mRNA, to be produced than that of the long
form fosB mRNA, possibly indicating that there is
not an abundance of phosphorylated PTB1 which is
required for splicing (Marinescu et al., 2007; Carle et
al., 2006, Alibhai et al., 2007). Some other articles
which report measurements of cfos and other IEG
MRNAS, but not AfosB, such as Persico et al. (1993)
are referenced in a following section on Jun family.

3.2 Expression of Fos family Proteins

A key graphical result is shown in Figure 8 for rat
striatum which was first published in Hope et al.
(1994b) and has been reproduced in many
subsequent articles. In this quantitative schematic,
the amounts of protein are plotted against time for
cFos, FosB, the fos related antigens Fral and Fra2,
and various isoforms of AFosB. In the top part of
the figure the results of an acute application of
cocaine (intraperitoneal 22.5 mg/kg cocaine
hydrochloride) are shown. The approximate
molecular masses in kDa of the various protein
products were given in Table 1 - see also Nye &
Nestler (1996) and Nestler et al. (2001).

Note that experimental results such as those in Hope
etal. (1994b) do not distinguish between nuclear and
cytoplasmic protein. It has been deduced, however,
that most of the protein detected is likely to be
nuclear (Perrotti et al., 2005, 2008; Nestler, private
communication).

A rapid rise of cFos occurs first, reaching a
maximum at about 2 hours and declining to near
basal levels at about 4 to 6 hours followed by a
slower rise of FosB, Fral, Fra2 and the least stable
form of AFosB. Similar results were obtained by
Sonnenberg et al. (1989) in the hippocampus after
application of ECS and Young et al. (1991) in the
striatum with intraperitoneal injection of cocaine.
After about 4-6 hours and up to 18 hours, cfos cannot
be induced thus exhibiting a refractory period which
commences at about the same time as the maxima for
FosB, Fral, Fra2 and the 33 kDa form of AFosB. The
possible mechanisms of this repression are various
and not completely understood as discussed below.
The stable isoforms of AFosB (35-37 kDa) are
slower to increase and for the acute stimulus remain
at a relatively low level.

In the lower part of Figure 8 is shown the 35-37
kDaAFosB protein resulting from twice daily
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administration of cocaine. At each of the 7 half-
daily doses, there is an approximately equal
increment which adds cumulatively with continued
slow decay until the next dose. The result is a stair-
case type function of time. AFosB* and AFosB*’
persist in the brain for many weeks following
cessation of the chronic stimulus (Carle et al., 2007;
Nestler, 2013). Such chronic induction of these
isoforms of AFosB has been demonstrated for nearly
all drugs of abuse in experimental animals and
human addicts (Nestler, 2013). For the majority of
drugs it is selective for D1-type MSN in the NAc but
with some stimuli there is also AFosB induction in
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Figure 8 Top part. Schematic of time courses of the Fos
family proteins as obtained by immunoblots in NAc with
acute exposure to cocaine. Depicted are cFos which
rises quickly and transiently, followed by somewhat
more slowly accruing but transient FosB, Fral, Fra2
and the least stable form of AFosB all of which are
shown here to have about the same time course.
However, as will be seen below, other reports indicate
differing time courses for FosB, Fral, Fra2 and AFosB.
The modified 35-37 kDa forms of AFosB rise more slowly
and decay very slowly. Bottom part. With time in days the
transients are not apparent with two cocaine exposures
per day for 2.5 days but with each stimulus there is a
ramp-like increase in the 35-37 kDa forms of AFosB.
Contributions from successive doses accumulate to give a
stair-case type function with decay occurring quite slowly.
The original graphic was given in Hope et al. (1994b);
the present diagram is based on the adaptation in
Nestler et al. (2001).
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D2-type MSN (Nestler, 2015b), as summarized for
NAc shell and core and dorsal striatum in Lobo et al.
(2013). Furthermore, owing to their great stability,
AF0sB® and AFosB*” have a strong and lasting
influence on drug-related behavior which may
persist up to months after the end of drug exposure
(Nestler, 2004a) thus playing an essential role in
addiction. Also, AFosB with molecular masses of 35-
37 kDa accumulates during chronic stress and due to
its extraordinary stability it remains in neurons for
many weeks after the termination of stress (Nestler,
2015a).

number of cFos mRNA in cell nuclei

3.2.1 Timing of mRNA and protein levels

Generally accepted times for the main steps from the
commencement of transcription to protein synthesis
in eurkaryotes are as follows. Transcription from
DNA to mRNA occurs on the order of a few minutes
to 20 minutes. Transport of mMRNA from nucleus to
cytoplasm (ribosomes) takes approximately 10 to 30
minutes but the translation to protein is much faster,
occurring within one or a few minutes. Hence protein
starts to appear about 30 minutes to 1 hour after
transcription starts. In prokaryotes, the transport step
is missing so the time delay from transcription to
translation is shorter, a figure of 7.5 to 10 minutes
being used in a stochastic model of gene expression
in Escherichia coli (Gedeon & Bokes, 2012).
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Figure 9 Top left. mRNA level (solid line) and number of cfos active cells (dashed line) in NAc in response
to haloperidol injections in rats. Adapted from Kovacs et al. (2001). Top right. cfos mMRNA and protein in
NAc resulting from sequential stimuli of morphine (MRNA) and foot-shock (protein). Adapted from Xiu et al.
(2014). Bottom part. Estimated time courses from various sources (see text) of cfos mMRNA and cFos protein

approximated by analytical expressions.
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Line drawings which display levels of mRNA and
protein are not common. In a study of the expression
of cfos in response to injections of various
antipsychotic drugs in several brain regions,
Kovacs et al. (2001) showed such graphical results
for cfos mRNA and for the number of cells
exhibiting cFos protein expression. Such data
gives an approximate idea of the relative timing of
cfos mRNA induction and its translation to the
protein. The highest levels of cFos protein in
response to haloperidol were found in the NAc and
CPu. Results for the effects of haloperidol on cfos
activity in the NAc are shown in the top left part of
Figure 9. The maximum level of cfos mMRNA occurs
at about 30 minutes after drug administration
whereas the maximal protein induction was seen at
the two-hour time point. Similar results were
reported by Xiu et al. (2014) as reproduced in the
middle part of Figure 9. These results were obtained
in NAc by superimposing results to two stimuli,
morphine and foot-shock.

Using experimental results for cfos mRNA and
protein from various preparations with acute stimuli
(Mitchell et al., 1986; Sonnenberg et al., 1989;
Winston et al., 1990; Hope et al., 1994b; Chenetal.,
1995), an estimate was made of their approximate
time courses. These have been fitted by the two
expressions with t in hours, firstly for cfos MRNA,
with @ maximum at 45 minutes

Cm(t) = 0.7t2 exp(—2(t — 0.2)?), 1)
and secondly for cFos protein with a maximum at 2 hours

Cp(t) = 0.05t° exp(—2((t —0.5)/1.5)?). 2

4. Jun family

Many other transcription factors influence the
production of fos family genes and proteins. This
influence, which can be negative or positive, is often
mediated through dimers called AP-1 as discussed
below. These dimers may be composed of a fos
family protein with a protein from another group of
IEGs called the jun family whose three main
members are cJun, JunB and JunD. The last to be
discovered was junD by Ryder (1989) which also
has information about the other two members. The
molecular masses of the jun family members do not
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seem to be as well documented as those for fos
family. Some representative figures are, in kDa,
cJun, 39, 39, 40-44: JunB, 39, 42, 44-46; and JunD,
39, 42 45-46, these data being from Kovary & Bravo
(1991), Bamberger et al. (2004) and De Leon et al.
(1995). The cjun promoter has a different structure
from that of cfos (Angel & Karin, 1991; Sng et al.,
2004). The junB promotor does not have a serum
response element but it contains an element that can
mediate responses to protein kinase A and protein
kinase C (de Groot et al., 1991; Moratalla et al.,
1993). Furthermore, early experiments indicated
that cJun could positively regulate cjun
transcription, in contrast to the negative effects of
cFos and cJun on cfos transcription (Sassone-Corsi
et al., 1988).

In quiescent fibroblasts cjun and junB are at very
low levels whereas junD is at relatively high levels
but serum stimulation leads to large increases in the
expression of cjun and junB but only a small
increase in that of junD (Ryseck & Bravo, 1991).

The abundance of jun family proteins and mMRNAs
varies greatly across brain regions and must depend
on the history of activity. In rat, cJun protein was
found at a high level in the dentate nucleus (Hughes
et al., 1992). cjun mRNA is expressed weakly in
cerebral cortex but more strongly in parts of the
hippocampus (Mellstrom et al., 1991). The same
study reported that junB and junD MRNAs were
expressed at high levels in hippocampus striatum,
thalamus, cortex, amygdala, and cerebellum.

Schwarzchild et al. (1997) found that glutamate
induced both cfos and cjun mRNA in cultured
striatal neurons, though cfos is induced much more
strongly, as shown here in Figure 10, whereas
dopamine and the cAMP agent forskolin induced
cfos but not cjun.

In parallel with the results for fibroblasts, in brain,
acute application of dopamine-releasing stimulants
such as amphetamine and cocaine leads in striatum to
the strong expression of junB and to a lesser extent
cjun (Persico et al., 1993; Cole et al., 1992;
Moratalla et al.,, 1993; Konradi et at., 1996).
Similar results were obtained in nucleus accumbens
with caffeine by Svenningson et al. (1995).
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Figure 10 The induction of cfos and cjun by glutamate. Adapted from Schwarzchild et al. (1997).

r T L T L]
o 2 [ 8 8
time (hrs)
jun B mRNA
c-jun mRNA
.p-""ﬁ-"“--.._

Figure 11 A. junB mRNA levels versus time with cocaine in
rat striatum, from Moratalla et al. (1993). B. junB and cjun
mRNA measured in rat nucleus accumbens with caffeine
(100 mg/kg). Based on data in Svenninson et al. (1995).

Figure 11A shows the time course of junB mRNA
in the study of Moratalla et al. (1993) and Figure
11B depicts the results of Svenninson et al. (1995).
Some idea of the relative strengths of cfos and junB
is obtainable from the data of Persico et al. (1993)
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for rat striatum where acute amphetamine resulted at
1 hour in cfos increasing by about 380%, junB by
425% and cjun by 94%.

5. Discussion

The induction of genes by neuronal activity is
fundamental to such processes as long term
potentiation and depression and addiction due to
stimulants like cocaine and amphetamines, which
result in increased stimulation of dopamine
receptors of such cells as the medium spiny neurons
of the striatum, particularly the nucleus accumbens.
Intense research over the last 25 years has
revealed details of the complex biochemical
sequences of reactions leading to transcription of
many genes. Similar quests have been made to
unravel the details of genetic changes involved in
many pathologies such as Alzheimer’s disease and
several other psychiatric disorders—see, for example,
the review by Yap & Greenberg (2018). The present
article reviews some of the quantitative aspects of
such neurogenomical processes. Recent reviews
pertinent to cfos transcription and the transcription
factors involved in cocaine addiction are contained
in Lara-Aparicio et al. (2022), Cruz-Mendoza et al.
(2022), Dalhdusser, Rossler & Thiel (2022) and
Teague & Nestler (2022). Further analysis of the
complex circuits involved and their modeling will
be analyzed in detail in future articles.
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Abbreviations

AP, action potential; AP-1, activator protein-1; ATF, activating transcription factor; AMPA(R), a- amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate type (receptor); BDNF, brain-derived neurotrophic factor; CK2,
casein kinase 2; PKA, protein kinase A; CaM, calmodulin; CaMKII, Ca2+/calmodulindependent protein kinase
Il; CaN, calcineurin, also called protein phosphatase 2B (PP2B, PPP3); CBP, CREB binding protein; CPu,
caudate-putamen; CRE, cAMP response element; CREB, cyclic AMP response element-binding protein;
DARPP-32, dopamine- and cAMP-regulated 32 kDa phosphoprotein; DREAM, downstream repressor element
antagonist modulator: DS, dorsal striatum; DSE, dyad symmetry element (part of SRE); DUSP, dual-specificity
phosphatase; EGF, epidermal growth factor; EIk1 or Elk-1, member of a ternary complex factor (TCF) subgroup
of the family of ETS (E-twenty-six) domain transcription factors; EPSP, excitatory post-synaptic potential;
ERK, extracellular signal-regulated kinase; FRA, Fos-related antigen; g9A, EHMT2, euchromatic histonelysine
N-methyltransferase (Ehmt2); GAPDH, glyceraldehyde- 3-phosphate dehydrogenase; H4, acore histone that
may be covalently modified; H3K9me2, H3 lysine 9 modified with covalency 2; HDACL, histone deacetylase
1; ICER, inducible cAMP early repressor; IEG, immediate early gene; K, abbreviation for lysine; kDa,
kiloDalton; LC, locus coeruleus; MAPK, mitogen-activated proteininase(s); MEK, MAPKK, MAP kinase
kinase; mRNA, messenger RNA; MSK1, mitogen and stress-activated protein kinase; MSN, medium spiny
neuron; NAc, nucleus accumbens; NMDA(R), N-methyl-D-aspartate type (receptor); pCREB, phosphorylated
CREB; NGF, nerve growth factor; PDGF, platelet-derived growth factor; PKA, protein kinase A; PP1, PP2A,
protein phospatase 1, 2A; PRC2, Polycomb Repressive Complex 2; PTB1, polypyrimidine tract binding protein;
Ras-GRF1, Ras guanine nucleotide exchange factor-1; RSK, ribosomal subunit protein S6 kinase; S,
abbreviation for serine; SIE, sis-inducible element; SIRT, silent information regulator of transcription; SNpc,
substantia nigra pars compacta; SNpr, substantia nigra pars reticulata; SRE, serum response element; SRF,
serum response factor; STEP, striatal-enriched tyrosine phosphatase (Ptpn5); SWI/SNF, mating switching and
sucrose non-fermenting complex; T, abbreviation for threonine; TrkB, tyrosine receptor kinase B; U2AF,
splicing factor; VTA, ventral tegmental area; Y, abbreviation for tyrosine.
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