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Abstract 
 

By juxtaposing time series analyses of activity measured from a fully recurrent network undergoing disrupted processing and 

of activity measured from a continuous meta-cognitive report of disruption in real-time language comprehension, we present 

an opportunity to compare the temporal statistics of the state-space trajectories inherent to both systems. Both the recurrent 

network and the human language comprehension process appear to exhibit long-range temporal correlations and low entropy 

when processing is undisrupted and coordinated. However, when processing is disrupted and discoordinated, they both exhibit 

more short-range temporal correlations and higher entropy. We conclude that by measuring human language comprehension 

in a dense-sampling manner similar to how we analyze the networks, and analyzing the resulting data stream with nonlinear 

time series analysis techniques, we can obtain more insight into the temporal character of these discoordination phases than 

by simply marking the points in time at which they peak. 
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1. Introduction 

 

In recurrent neural networks, as activation is passed 

back and forth among the nodes, the system will 

typically drift toward a stable or metastable pattern of 

activity over time (e.g., Amit, 1989; Anderson, 1995; 

Grossberg, 2012). When new inputs are introduced to 

the network that fit into its established regime, or are 

already anticipated by the direction of its flow in state 

space, then the network will smoothly accommodate 

those external inputs. However, when a disruptive 

perturbation is introduced to that activity flow, or one 

that is antithetical to the direction of its flow in state 

space, then the smoothly coordinated metastable pattern 

of activity across the network will typically become 

uncoordinated for some period of time. Such 

discoordination may result in a sizeable error signal that 

can be used by a learning algorithm, and it may also 

manifest itself as an increase in high-variance activity    

.. 

across the network. Although the error signals are often 

measured individually at a few selected points in time, a 

detailed understanding of the continuous temporal 

dynamics of this high-variance activity will typically 

require nonlinear time series analysis instead. 

 

In the case of human language comprehension, the 

network scenario is much like that just described. The 

central nervous system’s recurrent networks are passing 

activation back and forth based on previous linguistic 

input (and other context) at the same time that they are 

being forced to accommodate new external input that 

continuously flows in (Spivey, 2007). The result is that 

readily-accommodated new input maintains coordina- 

tion of the networks but difficult-to-accommodate (or 

unanticipated) input typically generates discoordination 

and an increase in high-variance activity across the 

cortical language networks. The field of cognitive 

neuroscience has developed some understanding of         

.. 
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these indices of discoordination, particularly with the 

event-related potential (ERP) measures of the N400 for 

semantic anomaly (Kutas & Hillyard, 1980) and the P600 

for structural anomaly (Osterhout & Holcomb, 1992). 

  

In this article, we review and examine these kinds of 

measures of network error, network coordination, and 

network discoordination, in the context of sigmoidal-

activation recurrent networks, spiking recurrent 

networks, and real-time naturalistic spoken language 

comprehension. We then use nonlinear time series 

analysis to compare measures of temporary network 

discoordination to a novel measure of temporary 

disruption in language comprehension. We conclude that 

by measuring human language comprehension in a 

manner similar to how we analyze the networks, and 

analyzing the resulting data stream with nonlinear time 

series analysis techniques, we can obtain more insight 

into the temporal character of these discoordination 

phases than simply marking the moments in time when 

they peak. 

  

At one scale of analysis, language processing might be 

described as a “sender” delivering a message to a 

“receiver” (Campbell, 1982; Shannon & Weaver, 1949). 

However, substantial recent research is showing that at 

other spatial and temporal scales of analysis, naturalistic 

language use behaves more like two or more complex 

networks (e.g., people) becoming coordinated in their 

word choices (Brennan & Clark, 1996), syntactic choices 

(Branigan, 2007), perceptual choices (Fusaroli et al., 

2012), facial expressions and hand gestures (Louwerse et 

al., 2012), eye movements (Richardson & Dale, 2005), 

brain activity (Kuhlen et al., 2012) and even their 

postural sway (Shockley et al., 2003). Rather than 

pretending that naturalistic language use progresses in a 

discrete trade-off of regimented turn-taking between 

uninterrupted message-delivery events, treating it as a 

pair of recurrent networks that have become connected 

by a continuously shared information flow (Dale & 

Kello, 2018; Falandays et al., 2020; Spivey & 

Richardson, 2009) may provide a new perspective that 

improves our understanding of the predictable and 

unpredictable multiscale temporal dynamics that emerge. 

Such accounts of cognition that rely on recurrent causal 

feedback loops of information flow spanning across 

multiple spatial scales and temporal scales support a        

…       

 “contextual emergence” (Atmanspacher & Beim 

Graben, 2009; Bishop et al., 2022) of coordinated 

cognitive behavior that might look as though it was 

guided by centralized rules and symbols even though it 

was not.  

 

2.    Measures of network error 

 

A key component of language understanding is the 

ability to detect errors in the language input we receive 

or in our individual parsing or processing. The 

importance of learning by extrapolating from and 

mimicking examples has long been of interest to the 

linguistic development research community (Bloom et 

al., 1974). Children and other language learners often 

need feedback in order to correct their mistakes (Carroll 

et al., 1992; Hirsch-Pasek et al., 1984). However, with 

time and enough exposure, linguistic expectations begin 

to consolidate and get applied in use, such as words 

should have mutually exclusive meanings or that 

plurality can be expressed by adding ‘s’ to the end of a 

word (Markman & Wachtel, 1998; Ramscar et al., 2013). 

Violations of these expectations become important 

events that brains are sensitive to and, as such, are 

reflected in brain activity.    

 

For quite some time, neuroimaging techniques have been 

providing insight into how brains respond to anomalous 

sequences of linguistic stimuli. Brain waves are electrical 

signals with rhythmic and oscillatory properties that can 

be captured by methods such as electroencephalography 

(EEG). Substantial evidence has repeatedly validated 

EEG activity in certain cortical regions as reflective of 

activity responding to specific types of stimuli and 

thereby related to specific cognitive functions. Abrupt 

changes in the brain's electrical activity in response to 

semantic and syntactic anomalies, namely the N400 and 

P600 event-related potentials (ERPs), have been 

canonized according to their valence and time course. 

 

The N400 is a negative event-related potential (ERP) or 

hyperpolarization that starts at around 200 ms and peaks 

at 400 ms in response to the violation of semantic 

expectations and is generally spatially localized to the 

frontal, central and parietal channels (Kutas & Hillyard, 

1980). Even among semantically valid sentences, 

statistical differences in the predictability of a given word  
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can result in subtle differences in the magnitude of the 

N400 elicited (Kutas & Federmeier, 2011). Moreover, the 

N400 elicited by an anomalous sentence can be reduced 

or eliminated by the presence of a preceding context that 

makes the sentence more understandable (Nieuwland & 

Van Berkum, 2006) or by a “noisy-channel” that allows a 

listener to mentally-revise the anomalous word (Ryskin et 

al., 2021). Importantly, these semantic expectations, and 

their violations as evidenced by the N400, are not limited 

to language but extend to vision, action, and nonlinguistic 

sounds, to name a few (Kutas & Federmeier, 2011). 

 

Often discussed in tandem with the N400 is the P600, a 

positive ERP or depolarization, that peaks at 600ms to 

stimuli that violate syntactic or structural expectations. As 

with the N400, the P600’s exact function is a topic of 

debate, the primary tension being whether these ERPs 

reflect a global sentence or discourse-level reanalysis or 

whether they reflect difficulty with integration from 

expectations accrued by prior context (Kaan et al., 2000). 

While we do not presently weigh-in on this debate, we are 

inspired by both sides’ recognition of language 

processing as dynamic. In language research, the P600 

has been specifically dissociated from the N400 using 

stimuli that simultaneously violated both types of 

expectations (e.g. “the meal was devouring.”). For these 

stimuli, researchers found participants most often elected 

a thematic parse where the error was syntactic (incorrect 

ending to the verb), rather than semantic (incorrect 

subject-object relations), which was accompanied by a 

P600 response and lacking an N400 response (Kim &        

.. 

Osterhout, 2005). Like the N400, the P600 also extends 

beyond language, as it is observed during structural 

violations in music as well (Patel, 2003). 

 

Simulations of language use have long been employed in 

the study of language processing. Often, these 

simulations abstract the units of language into their 

functional roles in the meaning-making of the linguistic 

unit, whether that be letters in words, parts-of-speech in 

sentences, or successive sentences within narratives. 

Despite this abstraction, these simulations have been 

successful and useful for deriving and theorizing about 

language processing. Moreover, in language simulations, 

the utility of error as an indicator about the semantic or 

syntactic parse is also well established. With a simple 

recurrent network architecture, using sigmoidal-

activation units, the Elman (1990, 1991) is able to learn 

basic sentence structures by predicting upcoming words 

and deriving an error signal by comparing its prediction 

to the actual next word in the input. After training with 

backpropagation, the network is able to use a few words 

of previous context to predict what will follow. 

Importantly, at the joints between completed sentences, 

however, the network's error shows a steep increase 

(Figure 1). This jump in error results from a diffuse 

prediction of the many possible words that may start a 

new sentence compared to the specific individual word 

that actually starts that particular next sentence. This error 

spike can be framed as an implicit acknowledgement of 

uncertainty in processing the current input, not unlike the 

P600 and the N400. 

 

 

 
 

Figure 1. Schematic example of a network’s mean squared error in a simple recurrent network being exposed 

to sequences of words that form short sentences. As a sentence progresses, its upcoming words get easier 

to predict. However, when the end of a sentence is reached, and the word that begins the next sentence is 

not easily predicted, the Elman net produces a spike in its error measure. 
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Simulations have also been made of EEG activity, some 

of which have focused on biological plausibility, while 

others have prioritized alignment with real human 

behavior and responses. Rabovsky & McRae’s (2014) 

simulation had a functional focus, starting with the 

premise that the N400 response is consequent to 

difficulty processing semantic information. Informed by 

this premise, they constructed a network with a 30-node 

input layer fully connected to 2,526 semantic nodes or 

features. These features were determined a priori in a 

separate study where people were asked to generate 

tokens of semantic information for a given word (McRae 

et al., 1997). Rabovksy & McRae’s (2014) was trained 

on 541 concepts or words, encoded as unique distributed 

patterns of 1s and 0s to be fed to the input layer. The 

network used backpropagation to adjust its weights and 

was evaluated on the whole network error, as measured 

by cross-entropy error, and on the whole network 

activation. The network was tested on several different 

phenomena to which the N400 has been found sensitive, 

namely, priming effects, semantic richness, word 

frequency, repeated exposure, and the number of 

orthographic neighbors (words that share all letters 

except for a single letter, preserving letter position). The 

network was successful in replicating the N400 patterns 

in these various phenomena by exhibiting increases in 

cross-entropy error (see also, Rabovsky et al., 2018). 

 

Successful simulation of error detection has also been 

conducted for the P600 response. With a reservoir 

network, Hinaut & Dominey (2013) were able to 

simulate the P600 response to syntactically anomalous 

stimuli. In most cases, a reservoir network contains a 

fixed reservoir of nodes with recurrent connections. 

Inputs are connected to this reservoir, and thereby low-

dimensional inputs become projected into a higher-

dimensional space. This projection enables the network 

to be sensitive to both spatial and temporal patterns in 

the input stream. The reservoir is often connected to a 

“readout” or output layer. Unlike the connections in the 

input layer and reservoir itself, these connections are 

adjusted and serve as the site of learning. Hinaut and 

Dominey’s network, in particular, contained 300 nodes 

with 10% connectivity and conceptually represented 

processing in the prefrontal cortex outputting to the 

striatum, which is purported to support the speed of 

syntactic error detection. The network was fed an input 

stream of sentences and was trained to produce the part 

of speech for nouns, whether the noun was the subject or 

the object of the verb. To adjust reservoir-output 

connections, regression techniques were used. In 

general, the network was successful in identifying word 

roles and was generalizable to untrained constructions. 

For subject- and object-relative sentences, the network 

would consider multiple competing role identifications 

until disambiguating words were inputted. At that point, 

because of the lower frequency of relative sentences in 

the corpus, the instantaneous change in output activity 

spiked, akin to a P600 response. 

 

Expanding on reservoir-type networks and responses to 

unexpected stimulus inputs, Falandays et al. (2021) 

trained a spiking reservoir-like network (100 reservoir 

nodes, 10% connectivity with the input layer) on a 

simple set of word sequences. Like a reservoir network, 

the network had a fixed number of nodes. However, 

unlike canonical reservoir networks, nodes in this 

network updated their connections after each timestep to 

maintain a homeostatic critical level of activity, 

producing approximately one outgoing spike for every 

incoming spike. With no output layer, instead, the 

activity of the reservoir was interpreted directly. The 

network was fed a series of sentences created according 

to a probability matrix. This matrix included the nouns 

“dog” and “man” and the verbs “bites” and “walks.”  All 

eight grammatically possible noun-verb-noun 

combinations were used as input sentences (separated by 

an end-of-sentence input marker), but differential 

probabilities were assigned according to the more 

typical semantic relationships. The network was able to 

differentiate between the words (and subject/object 

roles), creating regular, consistent, and unique 

distributed representations in the reservoir layer for each 

of them. Importantly, when the input layer was fed the 

word “man” but then nothing else for two-time steps, the 

reservoir continued to generate activity in the absence of 

input – as though it was anticipating the likely next 

words. The following time step involved the reservoir 

producing a pattern of activity that was extremely close 

to the distributed representation for the verb “walks.” On 

the time step after that, the reservoir produced a pattern 

of activity that was moderately consistent with the 

distributed representation for the input “dog” (as a direct 

object). Anomaly-detection phenomena were also 

observed with this network, similar to a P600.   When a    
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subject noun was followed immediately by an object 

noun instead of the regular verb, mean activity in the 

reservoir increased substantially higher than the typical 

activity level – not unlike the sharp increase in error seen 

with the Elman net when its predictions are violated 

(Figure 1). 

 

This simulated network demonstrates several key points. 

Firstly, the homeostatic “learning” algorithm was highly 

local, with each node adjusting its connections simply to 

maintain a homeostatic balance in its input/output ratio. 

However, population-level collective representations 

emerged for not only the word itself but for the word’s 

role in the sentence (subject/object). Secondly, this work 

questions how explicit the recognition of “error” needs 

to be in a learning algorithm. In this network, there is no 

teaching signal of any kind; rather, the learning is 

localized to each node and based on a homeostatic 

process of balancing local connectivity. Finally, the 

anticipatory persistence of the network activity in the 

absence of input calls into question the need for any 

explicit treatment of prediction as though it were an 

internal representation of expected upcoming input 

(Clark, 2015; Hohwy, 2013). In this network, the same 

connectivity pattern, and its concomitant flow of 

activity, carry out the system’s processing of incoming 

input and its anticipation of future input – without the 

need for a separate forward model that generates 

predicted representations. Evidently, behavior that 

mimics predictive processing can emerge in a network 

that is doing little more than becoming dynamically 

entrained with the sequences in its environment (Dubois, 

2003; Falandays et al., 2021; Falandays et al., 2023; 

Marmelat & Deligniéres, 2012; Stepp & Turvey, 2010; 

see also Di Paolo et al., 2022; Raja, et al., 2021). 

 

3. Measures of network coordination 

 

Dynamic entrainment between the rhythms of a brain 

and the rhythms of the environment can be similar to the 

dynamic entrainment between the rhythms of two 

neighboring brain regions. In the cognitive neuroscience  

of language processing, increasing evidence has 

mounted that synchrony across brain regions is 

fundamental to what is typically described as context  

effects (Hauk et al., 2017). Perhaps the method by which 

 

ambiguity and uncertainty in one subsystem are resolved 

by contextual information from another subsystem 

involves those two subsystems becoming synchronized 

to some degree. Some of this synchrony and interaction 

can be captured by detangling brain waves at the 

frequency level. For example, Lewis et al. (2017) 

recorded EEG data from participants while they read 

sets of four sentences that were either unrelated to each 

other or formed a coherent narrative. They found that 

oscillatory activity in the beta frequency range (13-21 

Hz) was significantly stronger with the coherent 

narratives. For some time now, it has been understood 

that since neural networks behave as complex dynamic 

systems, synchrony in brain waves will be a particularly 

fruitful indicator of interdependencies between 

subsystems in the network (Lopes da Silva, 1991). 

 

Emergent synchronization of oscillatory activity has 

frequently been observed in neural dynamics (Chialvo, 

2010), particularly when the network is flexibly 

balanced on a critical point of metastability (Kello et al., 

2023), somewhere in between stagnant stability and 

rampant chaos. For spiking neural network simulations, 

this critical point is achieved when each node emits 

approximately one outgoing spike for every incoming 

spike (Kello, 2013). However, with sigmoidal-activation 

networks, the critical point that fosters emergent 

synchrony may look slightly different. Falandays et al. 

(2020) found that a fully-connected 100-node network 

with a logistic activation function, random weights 

centered around a mean of zero, and a random starting 

activation was mostly likely to drift toward a global 

oscillatory activity regime (instead of flatlining), 

particularly when the standard deviation of its random 

weights was close to 1.2. When two such networks were 

minimally connected (Figure 2), Falandays et al. (2020) 

found that they would become entrained with one 

another, coaxing each other to slightly change their 

rhythms to approach one shared rhythm. 

 

   This can be seen with “single-cell recordings” from the 

simulated networks. In new analyses of the behavior of 

these networks, we report here new statistical evidence 

for temporal coordination between the two networks 

after a single   bi-directional connection is introduced      

. 
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Figure 2. Fully-connected random networks are given a single bi-directional connection (between Network 

A’s node 18 and Network B’s node 6) that instigates coordination between the two networks. 

 

across the two of them, between two arbitrary nodes: 

Network A’s node 18 and Network B’s node 6. By 

recording the activity of Network A’s node 52 and 

Network B’s node 58 (which are not directly connected 

to each other), we were able to track their uncoordinated 

behavior before the two networks were connected and 

then compare it to their coordinated behavior after the 

two networks were connected. For best comparison, the 

time series for Network A’s node 52 and Network B’s 

node 58 were z-scored and then overlaid in Figure 3A. 

Network A’s node 52 (in black) completes a cycle every 

5 time steps whereas Network B’s node 58 (in red) 

completes a cycle every 12 time steps. The two-time 

series are uncorrelated no matter what lag one applies in 

a cross-correlation. 

 

By contrast, when the two nodes are compared after the 

bi-directional connection has been introduced, one can 

see that the two time series have developed some 

similarity in their patterns (despite the fact that these two 

nodes are not directly connected to each other). See 

Figure 3B. Network A’s node 52 (in black) now tends 

to have a two-peak cycle that repeats every 11 time steps 

and Network B’s node 58 (in red) also has a cycle that 

repeats every 11 time steps. With a lag of 2 time steps 

shifting the time series for Network A’s node 52 

rightward, the cross-correlation between these two 

nodes is quite strong; r = .45. Most randomly selected 

pairs of nodes across the two networks exhibit a 

temporal coordination of some kind after the bi-

directional connection has been introduced (Falandays 

et al, 2020). 

 

 
 

Figure 3. Before and after the networks are connected: Z-scored time series for Network A’s Node 52 

    (in black) and Network B’s Node 58 (in red).  
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Since Network A’s 100 nodes are fully interconnected, 

and thus their activity patterns are interdependent, 

extracting a time series from just one of those nodes and 

embedding it in multiple dimensions can provide a 

glimpse into the network’s overall activity (Takens, 

1981). This state-space reconstruction technique simply 

requires taking regularly-spaced samples from the single 

time series (e.g., time slices 1, 4, 7, 10, etc.) and treating 

them as the x-dimension. Then, one takes the remaining 

regularly-spaced samples (e.g., time slices 2, 5, 8, 11, 

etc. along with time slices 3, 6, 9, 12 etc.) and treats them 

as the y- and z-dimensions. The reconstruction can take 

place in a state-space with any number of dimensions, 

but for data visualization, three dimensions is useful. In 

this state-space reconstruction, the first time slice of an 

embedded 3-dimensional trajectory carries with it 

information about the original time series’ 1st, 2nd and 

3rd activity levels and the second time slice of this           

… 

embedded trajectory carries information about the 

original data’s 4th, 5th, and 6th activity levels, etc. As long 

as the activity of the other 99 nodes is interdependent 

with the activity of the measured node, then embedding 

that one node’s time series into multiple dimensions can 

produce a multi-dimensional trajectory that bears 

substantial resemblance to the overall network’s own 

multi-dimensional trajectory (Spivey, 2018; Stephen et 

al., 2009). Figure 4A shows the absence of shared 

locations visited by Networks A and B before the 

connection is introduced. The vertices in the red 

trajectory (Network B’s Node 58) do not overlap with 

any of the vertices in the black trajectory (Network A's 

Node 52), thus revealing the lack of coordination 

between the networks. By contrast, Figure 5B shows 

substantial visiting of shared locations after the cross-

network connection is added, thus revealing significant 

coordination between the two networks.      

 
 

 

Figure 4. Before connected (A) and after connected (B): State-space reconstruction of Z-scored time series for 

Network A’s Node 52 and Network B’s Node 58 embedded in 3 dimensions. Very little recurrence (i.e., overlap 

in locations visited by red and by black) is evident before the networks are connected (A). However, substantial 

recurrence is evident after the networks are connected (B). 

 

Results show that a single bi-directional connection 

between the networks made it so that almost any 

randomly selected node from one of the original 

independent networks became correlated (or anti-

correlated) with any randomly selected node from the 

other network (Falandays et al., 2020). The individual 

and collective networks were self-propagating, and over 

time, stabilized to a regular, periodic pattern of activity. 

When the trajectories through state space of these 

networks are examined, the connected network’s trajec- 

tory becomes a meld of the two individual network 

paths. Given the immense level of connectivity in the 

brain, we expect that multiscale interactions like this are 

pervasive. Unpacking these interdependencies may lend 

unique insights beyond examination at any one 

particular scale. To that end, recurrence quantification 

analysis (RQA) is a statistical method – not relying on 

assumptions of normality or stationarity – which can be 

leveraged for that express purpose (Marwan et al., 

2007).… 
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In general, RQA describes a system’s trajectory through 

state space by quantifying the degree of return or 

revisitation to specific portions of this space. When 

performed on a single system, the results can reveal the 

systematicity with which it carries out coherent steady 

cyclic loops in its state space, exhibiting recurrences of 

sequenced values at long- and short-time scales, 

stabilization at certain values, as well as degrees of 

determinism and entropy. RQA can corroborate whether 

the underlying generative system is stabilized in a 

simple cyclic pattern, born from multiscale interaction 

between numerous nested subprocesses, or exhibiting 

chaotic unpredictable behavior. 

 

First, we use Marwan et al.’s (2007) RQA software to 

examine how the internal dynamics of Network A were 

changed by the introduction of this one bi-directional 

connection with Network B (Figure 2). As we will see, 

RQA produces a wide variety of measures, but since we 

have a record of all the data inside these 100-node 

network simulations and we know when the external        

.. 

perturbation was introduced, we can examine these 

different measures to see which ones provide an index 

of these system transitions that we know are taking place 

in the networks. When we examine Network A’s node 

52 by itself, in a (auto)recurrence analysis, we line up 

the node-activation time series with itself on both x- and 

y-axes and look for recurrences in the state-space, which 

are plotted as black dots on the recurrence plot (Figure 

5). This is why in a (auto)recurrence analysis, the main 

diagonal (or Line of Identity, where each time slice is 

lined up with itself) is always a solid line of dots. Since 

we know that the actual state space of each network’s 

activity has 100 dimensions, for these recurrence plots, 

we embedded the time series in more than 3 dimensions. 

For ease of computability, we settled on a 10-

dimensional embedding and a radius criterion of 2. 

Figure 5 shows the (auto)recurrence plots for Network 

A’s node 52 before the cross-connection with Network 

B was introduced (panel A), immediately after it was 

introduced (panel B), and 100-timesteps after it was 

introduced (panel C).  

 
 

      Figure 5. Recurrence plots of Network A’s node 52 before (A), immediately after (B), and long after (C) the  connection    

           from Network B was introduced. Panel D plots node 52’s raw time series throughout this disruption  and recovery. 
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Among these RQA measures, Overall Recurrence 

(proportion of the plot filled with black dots) is always 

analyzed in recurrence plots. In this case, Recurrence 

was .34 before the connection was introduced, .30 

immediately after it was introduced, and .23 100-

timesteps later. Entropy in the recurrence plot 

measures the unpredictability of the deterministic 

structure in the system. Not surprisingly, Entropy 

starts low (2.49) before the connection is introduced 

(Figure 5A), increases to 3.41 right after the 

connection is added (Figure 5B), and then returns to 

low levels again (2.34) after the network has had some 

time to accommodate to the new dynamics (Figure 

5C). Trapping Time measures the average length of 

the vertical lines in the plot and serves as an index of 

how long the system remains in any specific state. 

This measure, too, seems to document the transition 

that Network A goes through. Before the connection 

is introduced, Trapping Time is 2.03. Immediately 

after the connection is introduced, it increases to 7.42. 

Then, after 100 timesteps have elapsed, it returns to its 

original range: 2.58. These measures serve as indices 

for the pre-, during - and post-disruption phases of 

behavior we imposed on this simulated network. 

 

Thus, even when the only thing that is measured is a 

single one-dimensional times series from one element 

of the complex system that is undergoing a disruptive 

perturbation, a great deal of information can be 

extracted from that signal by embedding it in a state 

space, building recurrence plots, and applying RQA to 

those plots. As we will see in Section 4, with real-

world systems whose connectivity we do not know in 

advance, these measures can also provide insight into 

their degree of coordination or discoordination. 

 

Analyzing these network simulations with state-space 

reconstruction and recurrence quantification analysis 

provides us with tools to track the coordination (and 

lack thereof) that may emerge in systems whose 

subcomponents may be interdependent and whose 

computations may involve multiscale nested 

processes. When a system is functioning smoothly 

and traversing layered rhythmic loops in its state 

space, the coordination of its subcomponents will be 

evident in the state-space reconstruction, in the 

recurrence plots, and in the recurrence quantification 

analysis measures. Moreover, when a system is not 

functioning smoothly, the discoordination should 

also be visible with these methods. 

 

4. Measures of linguistic discoordination 

 

So far, we have seen how state-space reconstruction 

and RQA can provide quantitative insight into the 

global character of a simulated interconnected high-

dimensional system, even when looking at just a one-

dimensional time series emitted by that system. We 

can now transfer that understanding to a human 

language process that similarly relies on an 

interconnected central nervous system from which we 

might extract a one-dimensional time series. The one-

dimensional time series we focus on here is one 

generated by human participants listening to a 

naturalistic speech that contains temporary syntactic 

ambiguities. As opposed to the full-blown syntactic 

anomalies (e.g., ungrammatical sentences) that elicit 

P600 effects in EEG signals (Kim & Osterhout, 2005), 

these temporary syntactic ambiguities are typically 

resolved as non-anomalous within the next few words 

(Bever, 1970). As a result, the discoordination in 

comprehension is often brief and mild, though still 

detectable in eye-movement patterns (Spivey & 

Tanenhaus, 1998), reaction times (Spivey-Knowlton 

et al., 1993), and graded grammaticality judgments 

(Bard et al., 1996).    

 

In the present study, participants listened to spoken 

narratives and used a computer mouse to continuously 

stream a running tally of their ease of comprehension. 

In contrast to previous methods, such as measuring 

saccadic eye movements or reaction times, this 

continuous meta-cognitive measure provides a time 

series of output throughout the course of the spoken 

narrative that can be analyzed with nonlinear time 

series analysis techniques such as RQA. Previous 

research has used dense-sampling measurements (e.g., 

mouse-tracking, eye-tracking) to examine theories of 

sentence processing in target selection and reading 

tasks (Farmer et al., 2007; Spivey & Tanenhaus, 

1998). These approaches often convert the complex 

movement data into a short sequence of discrete eye 

fixation durations or reduce the mouse movement task 

to a two-alternative forced choice (but cf. Dotov et al., 
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2010; Meyer et al., 2023). In such experiments, the 

data of interest are the mouse and eye trajectories. 

However, the quality and character of these 

movements (e.g., pauses, fixations, angular velocity, 

etc.) are rarely examined with time series analysis 

techniques.  

 

By contrast, we introduce an adaptation of the mouse-

tracking paradigm to explore a time series measure of 

comprehension felicity in the form of continuous self-

reporting of ease of comprehension. By providing a 

direct and informationally dense data stream, this 

novel method may reveal new insights into real-time 

meta-cognitive sentence processing because it allows 

one to apply nonlinear time series analyses to the data. 

In this experiment, we recorded continuous ratings of 

ease of comprehension while participants listened to 

reduced relative clause “garden path” sentences that 

have temporary syntactic ambiguities and also to 

unambiguous paired control sentences. 

 

These sentences are referred to as “garden path” 

sentences because they can give the reader/listener the 

impression that they have been led down the garden 

path to a dead end if their parsing of the syntax “took 

a wrong turn” and built the wrong syntactic structure 

early on. Take, for example, Bever's (1970) famous 

sentence, “The horse raced past the barn fell.” At first 

read, it may seem like an ungrammatical sentence, but 

this is simply due to the fact that the reader probably 

parsed “The horse” as the Subject of the verb “raced,” 

when in fact, it should be the Object of that verb. The 

phrase “raced past the barn” is not the main verb 

phrase of the sentence but instead is a relative clause 

describing some details about what was previously 

done to the horse by an unspecified agent. The main 

verb of the sentence, which describes what the horse 

is doing, is “fell.” An identical syntactic structure is 

seen in the following sentence that does not lead the 

reader down the garden path, “The landmine buried in 

the sand exploded.” The semantic content of these 

words, despite identical syntax, is what makes the 

difference in their processing (Spivey & Tanenhaus, 

1998). The semantics of “horse” and “race” naturally  

lead the reader to assume the horse is the Subject of 

the racing event, which leads the reader into building 

a syntactic structure with no place for the final word 

to fit in. However, the semantics of “landmine” and 

“buried” tend to lead the reader into correctly treating 

the landmine as the Object of the burying event, which 

involves building a syntactic structure with room for 

the final word to be included. Between the extremes 

of “garden path” and “no garden path” effects are 

sentences that may induce only partial confusion or 

intermediate discoordination in comprehension. For 

example, “The disc spun in the drive broke.” and “The 

child hurried through the doorway tripped.” 

 

Previous work with meta-cognitive sentence 

acceptability (or grammaticality) judgments has 

suggested that gradations in the acceptability of a 

sentence can indeed be captured with careful methods. 

Bard et al. (1996) adapted the psychophysical method 

of magnitude estimation to demonstrate that a 

consistent hierarchy of ratings can be found among 

participants for sentences that are not fully acceptable 

and also not fully unacceptable. Results like this have 

been interpreted as evidence that theories of syntax 

require some mechanism for gradience in 

acceptability to be included (Bard et al., 1996), 

perhaps in a fashion similar to how the field of 

phonology has allowed for gradations in acceptability 

via optimality theory (Prince & Smolensky, 2004). 

 

By extracting a continuous stream of graded 

acceptability measurements – instead of obtaining it 

only at the end of a sentence – our novel method may 

provide additional insights into the temporal dynamics 

of this gradience in syntactic processing. Moreover, 

since it is a densely-sampled data stream that uses 

nonlinear time series analyses, we can reveal hidden 

structures in the multi-dimensional temporal 

dynamics of these meta-cognitive garden path reports. 

The same indices of coordination and discoordination 

observed with our network simulations above can now 

be measured from human participants’ continuously 

streaming mouse-movement data.  
 

4.1 Methods  
 

4.1.1 Participants  
 

Forty-six participants were recruited from the 

undergraduate population at the University of 

California, Merced. The mean age was 20 years old, 
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and all participants reported normal hearing ability. 

Each participant contributed 5 ratings while listening 

to garden path sentences and 5 ratings while listening 

to control sentences. One participant contributed 

slightly less than 5 reports for each condition due to 

voluntary noncompliance.  

 

4. 1.2   Materials 
 

 

Sentence stimuli were generated using the open-

source text-to-speech software Balboa v.2.15.0.803. 

Embedded in a natural continuous narrative, we 

created 10 garden path sentences, where the 

unambiguous control version contained the phrase 

“who was” between the noun and the verb, whereas 

the ambiguous version had “who was” edited out with 

Audacity v.2.4. Eight of these garden path sentences 

were stereotypical reduced relative clauses, similar to 

those used in previous sentence processing 

experiments (e.g., McRae et al., 1998). The other two 

garden path sentences were less stereotypical natural 

sentence forms that still introduced relative clause 

ambiguities that can result in garden path effects 

(indicated by asterisks in sentence numbers 1 and 7 

below). These reduced-relative clauses introduce 

temporary syntactic ambiguity as to whether the noun 

phrase is the Subject or Object of the verb. Then, when 

the subsequent verb is heard, the syntactic ambiguity 

is resolved, forcing the initial noun phrase to be 

understood as the Object of the initial verb. The 

narrative was ~17 minutes or 173 sentences in total 

length and constant across participants, except that 

half heard a version of the narrative where 5 relative 

clause sentences were in their syntactically ambiguous 

reduced form and the other 5 in their unambiguous 

control form. 

 

In contrast, the other half of the participants heard the 

inverse version of that arrangement. Using these two 

slightly different stimulus lists allowed us to obtain 

data for both versions of each garden path sentence 

without having any one participant hear both versions 

of it. The semantic content of the rest of the narrative 

did not contextually resolve the ambiguities 

introduced inside the critical garden path sentences.  
 

 

 

1. Ana recalls one child (who was) bought an 

ice cream cone smiling at the driver. *  

2. The chef (who was) gifted the knife greeted 

the audience.  

3. The babysitter (who was) purchased a gift 

card, thanked the parents and went home.  

4. The manager (who was) prepared the report 

praised the employees.  

5. The doctor (who was) delivered the donor 

blood assisted several surgeons.  

6. The child (who was) read a story hugged the 

nanny.  

7. Ana nodded to Mr. Koga, and the man (who 

was) prayed for last Sunday. *  

8. One child (who was) saved a front-row seat 

surprised the clown with a mud pie.  

9. The dispatcher (who was) handed a pink slip, 

worried about the driver.  

10. The flight attendant (who was) called for 

arrived to address his concerns.  
 

4.1.3   Procedure 
 

Participants sat at computers in a private room and 

personally configured over-ear-headphones to 

comfortable hearing levels. We asked participants to 

move their mouse cursor freely within a rating box 

(Figure 6) as they listened to our stimulus sentences. 

To increase compliance, participants were allowed to 

take self-paced breaks at specified intervals. The 

box’s sides were labeled as ‘low’ and ‘high’ levels of 

comprehensibility. Participants’ mouse position in the 

box indicated their self-assessed current level of 

comprehension. Each participant (N=46) 

continuously listened to and rated the entire narrative. 

However, we are interested in the ratings of the garden 

path sentences and their unambiguous control 

versions. Each participant was randomly assigned to 

listen to one version (garden path or control) of these 

10 sentences of interest.  
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Figure 6. Rating box within which participants moved their mouse cursor to rate their ease of comprehension. A     

redline streamgraph at the bottom depicts their ratings updated in real-time. This graph served to aid in 

understanding the task and to further yoke changes in mouse position to changes in concurrent sentence processing.  

 

4.2 Results  

We compared the averaged normalized ratings of ease of comprehension between the garden path and control 

conditions of each critical sentence (Figure 7). At the start of the sentence, there is a sizeable but non-

statistically significant difference between the garden-path (blue) and control (red) versions of the sentence, 

where the garden-path version appears to show greater ease of comprehension than the control version. This 

could be due to the increased complexity of processing the “[noun] who was [verbed]” portion of the control 

sentence, which forces the reader to non-canonically treat the head noun of the sentence as the object of that 

verb. The fact that the garden-path version shows greater ease of comprehension during the start of the 

sentence may indicate that the listener is blithely treating the head noun of the sentence as the canonical 

subject of the verb, which is exactly what later leads to the garden-path effect in these sentences. Over the 

course of the garden-path sentence and shortly after it (blue line in Figure 7), a steep decline in ease of 

comprehension is apparent – much steeper than what is observed with the control version of the sentence (red 

line in Figure 7). Indeed, later in the time series, the difference in ease-of-comprehension between control and 

garden-path versions reverses dramatically during the two-second period beginning around the end of the 

garden-path sentence (GP_End in Figure 7) and persisting until the end of the noun-phrase in the subsequent 

sentence (Sub_NP_End in Figure 7). During that later temporal window, the garden-path version of the 

sentence elicits substantially lower ease-of-comprehension values than the control version. Much of that period 

of time is the silence between sentences, suggesting that the decrease in reported ease of comprehension is a 

delayed response to the end of the garden-path sentence – slightly similar to the delay seen with self-paced 

word-by-word button-press reading experiments compared to eye-tracking reading experiments (McRae et al., 

1998).  

We averaged across this later temporal window for each participant (middle of Figure 7) and, using a 

one-sided paired t-test, compared the mean of the garden-path condition (M = -0.071) to the mean of the 

control condition (M = 0.011); t(45)= 1.60, p = 0.058. This result affirms that this method can adequately 

capture participants’ fleeting awareness of encountering a brief garden-path effect.   

 

 

 

 

 

5.   Results 

 

We compared the averaged normalized ratings of ease-

of-comprehension between the garden path and control 

conditions of each critical sentence (Figure 7). At the 

start of the sentence, there is a sizeable but non-

statistically-significant difference between garden path 

(blue) and control (red) versions of the sentence, where 

the garden path version appears to show greater ease of 

comprehension than the control version. This could be 

due to the increased complexity of processing the 

“[noun] who was [verbed]” portion of the control 

sentence, which forces the reader to non-canonically 

treat the head noun of the sentence as the object of that 

verb. The fact that the garden path version shows 

greater ease-of-comprehension during the start of the 

sentence may indicate that the listener is blithely treating 

the head noun of the sentence as the canonical subject of 

the verb, which is exactly what later leads to the garden 

path effect in these sentences. Over the course of the 

garden path sentence and shortly after it (blue line in 

Figure 7), a steep decline in ease-of-comprehension is 

apparent – much steeper than what is observed with the 

control version of the sentence (red line in Figure 7). 

Indeed, later in the time series, the difference in ease-of-

comprehension between control and garden path 

versions reverses dramatically during the two-second 

period beginning around the end of the garden path 

sentence (GP End in Figure 7)  and persisting until the   

 

end of the noun-phrase in the subsequent sentence 

(Sub_NP End in Figure 7). During that later temporal 

window, the garden path version of the sentence elicits 

substantially lower ease-of-comprehension values than 

the control version. Much of that period of time is the 

silence between sentences, suggesting that the decrease 

in reported ease-of-comprehension is a delayed response 

to the end of the garden path sentence – slightly similar 

to the delay seen with self-paced word-by-word button-

press reading experiments compared to eye-tracking 

reading experiments (McRae et al., 1998).  

 

We averaged across this later temporal window for each 

participant (middle of Figure 7), and using a one-sided 

paired t-test compared the mean of the garden path 

condition (M = -0.071) to the mean of the control 

condition (M = 0.011); t(45)= 1.60, p = 0.058. This 

result affirms that this method can adequately capture 

participants’ fleeting awareness of encountering a brief 

garden path effect.   

 

Similar to the network error measures discussed above 

(recall Figure 1), the difference between ease-of-

comprehension for the garden path condition and for the 

control condition can pose as a kind of measure of error, 

or network discoordination, in the language 

comprehension process. Figure 8 plots the garden path 

condition’s ease-of-comprehension data stream minus    

. 
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that of the control condition, inverted so that greater 

difficulty with the garden path goes upward. Like Figure 

1, the result shows a gradual rise in awareness of 

comprehension difficulty (or perhaps a form of error) as 

the garden path effect unfolds and spills partially into the 

beginning of the next sentence. However, as the new 

sentence continues, this “error measure” returns down to 

baseline as the sentence reveals itself to be rather simple 

syntactically and thus predictable. 

 

To further characterize the structure of these 

comprehension rating time series, RQA was applied to the 

data. Based on the RQA treatments of the simulated 

networks above, examining the higher-dimensional 

dynamics of this time series may provide insight into the 

processes involved during a garden path effect. For 

example, recent work shows that RQA can distinguish the 

portions of an orchestra’s performance where the 

instruments are coordinated and those where the 

instruments are uncoordinated – even just from a one-

dimensional time series from a single audio source 

(Proksch et al., 2022). If the cognitive mechanisms that 

… 

 

process the syntax and semantics of a sentence are well 

coordinated during smooth comprehension and less 

coordinated during a garden path effect, perhaps RQA 

can reveal the characteristic dynamics of that reduced 

coordination.  

 

As with the network analyses above, RQA begins with 

embedding the time series in a higher-dimensional state 

space (recall Figure 4). A recurrence analysis on a single 

time series is thus aimed at observing revisitations of 

locations in the embedded state space. For best data 

visualization, in this first treatment, we embedded the 

later temporal window time series (where the garden path 

effect is statistically detected) in three dimensions. 

Figure 9 shows (in red) that the control sentence’s 

embedded trajectory loops back onto itself many times 

on both short and long-time scales, revealing numerous 

smooth revisitations of locations – as though generally 

settled into a comfortable metastable attractor. By 

contrast, the garden path version of the sentence 

produces a trajectory that loops onto itself only a few 

times locally and mostly extends out into state space – as 

though searching in vain for a metastable attractor. 

 

 

Figure 7. Averaged, normalized mouse positions (with standard error) for the time-window including 

the garden path sentence and subsequent sentence. As ease-of-comprehension drifts downward for the 

complicated critical sentence, it drops lower for the garden path version of the sentence (in blue) 

compared to the control version (in red).  

 

 

Volume 2 Issue 1, 2023                           263 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. State-space reconstruction of the later temporal window for the garden path sentence 

(in blue) and the control version of the sentence (in red). 
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Figure 8. The garden path condition’s ease-of-comprehension data stream, minus that of the control condition, is inverted 

so that greater difficulty goes upward during the garden path (similar to the network error measure in Figure 1). 

 

 



 

 

Following our analysis of Network A’s node 52 (Figure 5) undergoing its difficult transition of 

accommodating disruptive input from Network B, here we apply the same analyses to the normalized ease-of-

comprehension measure extracted from these participants. In contrast, they undergo the experience of a garden-

path effect during naturalistic spoken language comprehension. See Figure 10. The long-distance recurrences in 

the state-space trajectory are immediately detectable in panels A and C (before and after the garden path) as 

black dots far from the main diagonal. By contrast, the garden-path phase itself, panel B, has no long-distance 

recurrences in those upper-left and lower-right corners (similar that observed in Figure 5B). Much like with our 

RQA of Network A’s node 52, it turns out that the measures of Entropy and Trapping Time again serve to 

distinguish the disruption phase of the garden-path effect here (Figure 10B) from the rest of the time series before 

and after (Figure 10A and C).  

 

 

 

 

 

In Figure 10, overall Recurrence goes from .087 (panel A) down to .076 (panel B) and back up to .085 

(panel C). Correspondingly, Entropy starts out at 1.28 (panel A), climbs to 2.03 (panel B) and then returns to 

1.25 – much like it did in the data for Figure 5. Trapping Time (which indexes how long the system remains in 

any specific state) also starts low at 2.98 (panel A), climbs to 4.78 (panel B) and then returns to 2.91 (panel C). 

These RQA metrics for temporary network discoordination (Figure 5) and for temporary garden-path 

confusion (Figure 10) are remarkably similar to one another. This observation offers support for treating the 

disrupted cognition that results from a garden-path effect during sentence processing in terms of network 

dynamics (&), and not solely in terms of abstract computational modules that are attempting to resolve 

conflicting commands for syntactic parsing (Frazier & Clifton, 1995; Staub, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we turn to comparing RQA of the garden-path condition to the control condition. In this 

circumstance, it turns out that the set of RQA metrics that happen to be diagnostic of the difference between 

garden path and control is larger. The RQA metrics on which we focus here include recurrence rate, entropy, 

and trapping time, as before, but added to that set is determinism (based on the number of diagonals on the 

Following our analysis of Network A’s node 52 (Figure 

5) undergoing its difficult transition of accommodating 

disruptive input from Network B, here we apply the same 

analyses to the normalized ease-of-comprehension 

measure extracted from these participants while they 

undergo the experience of a garden path effect during 

naturalistic spoken language comprehension. See Figure 

10. The long-distance recurrences in the state-space 

trajectory are immediately detectable in panels A and C 

(before and after the garden path) as black dots far from 

the main diagonal. By contrast, the garden path phase 

itself, panel B, has no long-distance recurrences in those 

upper-left and lower-right corners (similar that observed 

in Figure 5B). Much like with our RQA of Network A’s 

node 52, it turns out that the measures of Entropy and 

Trapping Time again serve to distinguish the disruption 

phase of the garden path effect here (Figure 10B) from 

the rest of the time series before and after (Figure 10A 

and C).  

 

In Figure 10, overall Recurrence goes from .087 (panel 

A) down to .076 (panel B) and back up to .085 (panel C). 

Correspondingly, Entropy starts out at 1.28 (panel A), 

climbs to 2.03 (panel B) and then returns to 1.25 – much 

 

like it did in the data for Figure 5. Trapping Time (which 

indexes how long the system remains in any specific state) 

also starts low at 2.98 (panel A), climbs to 4.78 (panel B) 

and then returns to 2.91 (panel C). These RQA metrics for 

temporary network discoordination (Figure 5) and for 

temporary garden path confusion (Figure 10) are 

remarkably similar to one another. This observation offers 

support for treating the disrupted cognition that results 

from a garden path effect during sentence processing in 

terms of network dynamics (Gerth & Beim Graben, 2009; 

Tabor et al., 1997), and not solely in terms of abstract 

computational modules that are attempting to resolve 

conflicting commands for syntactic parsing (Frazier & 

Clifton, 1995; Staub, 2015). 

 

Now we turn to comparing RQA of the garden path 

condition to the control condition. In this circumstance, it 

turns out that the set of RQA metrics that happen to be 

diagnostic of the difference between garden path and 

control is larger. The RQA metrics on which we focus 

here include recurrence rate, entropy, and trapping time, 

as before, but added to that set is determinism (based on 

the number of diagonals on the recurrence plot, 

quantifying the number of specific sequences of short-

term local continuous recurrence)  and laminarity (based  

 
 

Figure 10. Recurrence plots of ease-of-comprehension before (A), during-and-after (B), and long after (C) the 

garden path was introduced. Panel D plots the normalized time series throughout this garden path disruption 

and recovery. (Compare to Figure 5.) 
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recurrence plot, quantifying the number of specific sequences of short-term local continuous recurrence) and 

laminarity (based on the number of the vertical lines, which quantifies recurring visitations to particular 

values). When run on the full temporal window defined by the start of the garden-path sentence to the end of 

the subsequent sentence (Figure 11A & B), RQA actually yields rather similar recurrence patterns across 

garden path and control conditions. In both conditions, recurrence is highly local, with temporal clustering, 

which appears as square-like shapes along the diagonal line of incidence. This similarity in structure is also 

reflected in the accompanying quantitative descriptions of the recurrence plot. Overall recurrence was .099 for 

the garden-path condition and .115 for the control condition. Entropy was 2.97 for the garden-path condition 

and 2.98 for the control condition. Trapping Time was 10.60 for the garden-path condition and 10.82 for the 

control condition. Determinism was .98 for the garden-path condition and .98 for the control condition. 

Laminarity was .99 for the garden-path condition and .99 for the control condition. Thus, RQA of the full 

temporal window spanning from the beginning of the critical sentence to the end of the subsequent 

sentence covers such a wide swath of sentence processing dynamics that no substantial differences are 

observed between the garden-path condition and the control condition.  

However, a more focused RQA was applied on the temporal window between the end of the garden-

path sentence and the end of the next noun phrase. This is where the meta-cognitive awareness of the garden 

path was detected in Figure 7 and where one sees a distinctive recurrence plot in Figure 10B. These analyses 

yielded robustly different recurrence patterns across garden path and control conditions. These differences 

were reflected qualitatively by comparing the two recurrence plots in Figures 11C & D and in the quantitative 

measures as well. For this more focused temporal window, overall recurrence was .082 for the garden-path 

condition and .125 for the control condition. Entropy was 1.99 for the garden-path condition and 1.40 for the 

control condition. Trapping Time was 4.52 for the garden-path condition and 3.47 for the control condition. 

Determinism was .93 for the garden-path condition and .77 for the control condition. Laminarity was .91 for 

the garden-path condition and .83 for the control condition. Thus, recurrence patterns during the garden-path 

effect were relatively more sporadic (lower recurrence rate, higher entropy) with a greater emphasis on short-

timescale recurrence (higher determinism and laminarity) than in the control condition during that same 

temporal window. 

 

 

 

 

 

 

 

 

 

 

 

on the number of the vertical lines, which quantifies 

recurring visitations to particular values). When run on 

the full temporal window defined by the start of the 
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similar recurrence patterns across garden path and control 
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subsequent sentence covers such a wide swath of sentence 

processing dynamics that no substantial differences are 

observed between the garden path condition and the 

control condition. 

 

However, a more focused RQA was applied on the 

temporal window between the end of the garden path 

sentence and the end of the next noun phrase. This is 

where the meta-cognitive awareness of the garden path 

was detected in Figure 7 and where one sees a distinctive 

recurrence plot in Figure 10B. These analyses yielded 

robustly different recurrence patterns across garden path 

and control conditions. These differences were reflected 

qualitatively, by comparing the two recurrence plots in 

Figure 11C & D, and in the quantitative measures as 

well. For this more focused temporal window, overall 

recurrence was .082 for the garden path condition and 

.125 for the control condition. Entropy was 1.99 for the 

garden path condition and 1.40 for the control condition. 

Trapping Time was 4.52 for the garden path condition and 

3.47 for the control condition. Determinism was .93 for 

the garden path condition and .77 for the control 

condition. Laminarity was .91 for the garden path 

condition and .83 for the control condition. Thus, 

recurrence patterns during the garden path effect were 

relatively more sporadic (lower recurrence rate, higher 

entropy) with a greater emphasis on short-timescale           

… 

 

recurrence (higher determinism and laminarity) than in 

the control condition during that same temporal window. 

 

The dense-sampling nature of this continuous meta-

cognitive ease-of-comprehension measure allows us to 

apply nonlinear time series analysis to the data, such as 

RQA. In particular, the discussions of Figures 9, 10 and 

11 suggest some insights into what exactly a subtly 

reportable syntactic garden path effect might be made of 

– not at an abstract computational level of description 

where rules and symbols are encountering conflict but at 

a concrete implementational level of analysis where the 

physical system of a set of cortical language networks is 

exhibiting quantitatively verifiable discoordination. 

When comprehension is going relatively smoothly, as in 

the control sentence condition, that trajectory appears to 

have a substantial amount of predictability (low entropy) 

and numerous loops or temporary limit cycles (e.g., high 

recurrence) that revisit certain regions even much later in 

the trajectory. See Figure 9 (red trajectory) and Figure 

11D. However, when comprehension is disrupted in the 

garden path condition, some of those smooth predictable 

loops (and later revisitations) disappear as the trajectory 

undergoes an increase in entropy. See Figure 9 (blue 

trajectory), Figure 10B, and Figure 11C. 

 

6. Measuring coordination and discoordination in 

language and in networks 

 

The viability and richness of mouse-tracking to measure 

fine-grain real-time meta-cognitive awareness during 

sentence processing is supported by the method’s ability 

to capture the substantial difference in ease-of-

comprehension ratings following the end of the garden 

path sentence, as compared to the matched control 

sentence. Once the method was proven to detect garden 

path effects, this dense-sampling measure opened up 

opportunities to use nonlinear time series analysis to 

investigate the temporal structure of the cognitive 

processes involved in resolving a temporary syntactic 

ambiguity – and potentially other effects in real-time 

language comprehension as well. 

 

For several decades now, the account of how language 

processing gets disrupted when incorrect syntactic 

structures are pursued during comprehension (e.g., garden 

path effects) has been based on an abstract computational 

account of rules and symbols being used by a syntax 

bybbuy 
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The dense-sampling nature of this continuous meta-cognitive ease-of-comprehension measure allows 

us to apply nonlinear time series analysis to the data, such as RQA. In particular, the discussions of Figures 9, 

10 and 11 suggest some insights into what exactly a subtly reportable syntactic garden-path effect might be made 

of – not at an abstract computational level of description where rules and symbols are encountering conflict but 

at a concrete implementational level of analysis where the physical system of a set of cortical language networks 

is exhibiting quantitatively verifiable discoordination. When comprehension is going relatively smoothly, as in 

the control sentence condition, that trajectory appears to have a substantial amount of predictability (low entropy) 

and numerous loops or temporary limit cycles (e.g., high recurrence) that revisit certain regions even much later 

in the trajectory. See Figure 9 (red trajectory)) and Figure 11D. However, when comprehension is disrupted in 

the garden-path condition, some of those smooth predictable loops (and later revisitations) disappear as the 

trajectory undergoes an increase in entropy. See Figure 9 (blue trajectory), Figure 10B, and Figure 11C. 

 

5. Measuring Coordination and Discoordination in Language and in Networks 

The viability and richness of mouse-tracking to measure fine-grain real-time meta-cognitive awareness during 

sentence processing is supported by the method’s ability to capture the substantial difference in ease-of-

comprehension ratings following the end of the garden-path sentence, as compared to the matched control 

sentence. Once the method was proven to detect garden-path effects, this dense-sampling measure opened up 

opportunities to use nonlinear time series analysis to investigate the temporal structure of the cognitive processes 

involved in 

 

 resolving a temporary syntactic ambiguity – and potentially other effects in real-time language comprehension 

as well. 

 

 
 

Figure 11. (A) Recurrence plot from the full temporal window spanning from the beginning of the garden path 

sentence to the end of the subsequent sentence (the full range of Figure 7). (B) Recurrence plot from the 

full temporal window spanning from the beginning of the matched control sentence to the end of the 

subsequent sentence. Framed in red is the later temporal window where participant reports show 

sensitivity to the garden path effect. (C) Recurrence plot of that later temporal window following a garden 

path sentence, revealing low recurrence and greater entropy. (D) Recurrence plot of that later temporal 

window following a matched control sentence.  

 

module inside the human mind (Frazier & Clifton, 1995; 

Frazier, & Fodor, 1978; Staub, 2015). The EEG measures 

of the N400 and the P600 have provided some snapshots 

into what the brain is doing at the moment of these 

disruptions in language comprehension (Kim & 

Osterhout, 2005; Kutas & Federmeier, 2011; Kutas & 

Hillyard, 1980) but have not provided insight into the 

continuous temporal dynamics of this process. By 

contrast, artificial neural network accounts (Gerth & 

Beim Graben, 2009; Tabor, et al., 1997) and dynamical 

systems theory treatments (Elman, 2009; Onnis & Spivey,      

… 

2012) have pointed to a description of language 

comprehension that emphasizes not rules and symbols but 

instead a continuous trajectory through neuronal state 

space – from which an extracted time series could be very 

informative. 

 

By juxtaposing such time series analyses of activity 

measured from a fully recurrent network undergoing 

disruption and of activity measured from a continuous 

meta-cognitive report task focused on disruption in 

language comprehension, we have attempted here to pro- 
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vide more insight into the statistical character of those 

syntactically disrupted (and non-disrupted) 

trajectories through state space. In the reconstructed 

state-space trajectory that RQA relies on, disrupted or 

discoordinated language comprehension appears to 

exhibit reduced long-time-scale auto-correlations (in 

the form of the overall Recurrence measure), 

increased short-time-scale auto-correlations (in the 

form of the Trapping Time, Determinism and 

Laminarity measures), and increased unpredictability 

(in the form of the Entropy measure). By contrast, in 

the state-space trajectory of undisrupted or 

coordinated language comprehension, there appear to 

be greater long-time-scale auto-correlations, less 

short-time-scale auto-correlations, and less 

unpredictability. 

 

Although we explore only the garden path effect in 

the present work, this method is highly flexible. This 

continuous meta-cognitive ease-of-comprehension 

measure does not depend on a visual context, such as 

the visual world paradigm (Tanenhaus et al., 1995). 

Therefore, this method can use sentences of any type, 

including those with highly abstract or figurative 

semantic content. In general, the time series data from 

this method affords a broader range of analyses for 

investigating linguistic processing. In addition to 

these subtle garden path disruptions, other 

perturbations can be tested, such as overt semantic 

and syntactic anomalies, linguistic negation, low-

frequency words and figurative language use, to name 

just a few. By obtaining data that can avail of 

nonlinear time series analysis for a wide variety of 

language tasks (as well as other continuous temporal 

signals), this novel method may open up new avenues 

for developing a deeper understanding of language, 

cognition, perception, and action. 

 

Abstract computational treatments of cognition in 

general (Griffiths & Tenenbaum, 2006) and of 

language in particular (Ryskin et al., 2021; Staub, 

2015) have made important advances in our 

understanding of how a mind processes complex 

input. However, those frameworks sometimes leave 

unexamined the specifics of exactly how a 

reconfigurable network of cortical language 

subsystems (Chai et al., 2016) achieves its smooth 

coordination during felicitous comprehension and 

how it undergoes some discoordination during briefly 

infelicitous comprehension. By comparing the 

statistical character of a data stream that is extracted 

from a neural network simulation (where everything 

can be known about what is going on inside) to that 

of a data stream extracted from a person processing 

language input (where one must infer what is going 

on inside), we suggest that some progress can be 

made in understanding aspects and parameters of the 

simulation that might correspond to certain aspects 

and parameters in the person (e.g., Spivey, 2018). For 

example, there may turn out to be certain statistical 

characteristics in a time series of cognitive 

performance, such as multiscale temporal structure 

(Van Orden et al., 2003), that are naturally achievable 

with certain implementation-level models (Kello, 

2013) but not naturally achievable with certain 

abstract computational models (Wagenmakers et al., 

2005). In this way, implementation-level analyses 

(such as those from neuroscience and neural network 

simulations) may provide constraints on which 

abstract computation-level models should be pursued 

in the cognitive sciences. 
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