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Abstract 

Neuroscience has become a big data enterprise. This is due in large part to the rapidly growing quantity and quality of data and 

increased appreciation of non-neuronal physiology and environments in explaining behavior, cognition, and consciousness. One 

way neuroscience is dealing with this embarrassment of riches is by appealing to investigative frameworks that put the multiscale 

nature of neural systems at the forefront. The current work offers one such approach: Nested dynamical modeling, a strategy for 

creating models of phenomena comprised of multiple spatial and/or temporal scales for purposes of exploration, explanation, and 

understanding. Building from dynamical systems theory and synergetics, nested dynamical modeling applies a methodological 

approach aimed at nesting models at one scale of inquiry within models at other scales without compromising biological realism. 

This strategy is demonstrated via a proof of concept. Some consequences this approach has for the epistemological and theoretical 

commitments of neuroscience are discussed. 

 
Keywords: Big data, dynamical systems theory, nested dynamical modeling, multiscale, synergetics. 

 

Challenges arising from increased data are further 

compounded when scaling to even finer features of 

neurophysiology, such as research aimed at integrating 

dendritic and synaptic activity in neural models (e.g., 

Poznanski, 2002a, 2002b). 

 

This embarrassment of riches has resulted in calls for 

prioritizing neuroinformatics databases combined with 

computational models and analytical tools for analysis, 

integration, and sharing of experimental neuroscience 

data (Akil et al., 2011)—and refocusing ongoing projects 

from experimental research to the development of 

infrastructure, such as the Blue Brain Project (Markram, 

2006) and the Human Brain Project (Human Brain 

Project, 2022). 

 

Regarding the second, the above-mentioned explosion of 

data has been in part due to the increasing 

acknowledgment of the contributions of nonneuronal 

causally and constitutively relevant factors to phenomena 

once thought explanatorily and ontologically reducible to 

the brain. The idea that not only brains, but also the body 

and environments they are situated in, play significant 

roles in both constituting and causing behavior, cognition, 

… 

1. Introduction 

 

Neuroscience has become a big data enterprise (e.g., 

Frégnac, 2017). In the current work, “big data” refers to 

two characteristics of contemporary neuroscience: one is 

the quality and quantity of data and the other is the 

relevant sources of data. Regarding the first, with the 

advent of ever more sophisticated recording methods, 

there has been an explosion of data obtained about neural 

systems and related behaviors. Examples of such 

research abounds in the neural decoding literature. Here, 

recorded brain activity are used to make predictions 

about features in the world and have increasingly been 

integrated with machine learning tools, like support 

vector machines (Glaser et al., 2020). Illustrative cases 

of decoding from large data sets of neural recordings 

include such machine learning-based analyses of 

electroencephalography (EEG) data as those that 

differentiate phonetic prototypes from ambiguous 

speech sounds (Mahmud et al., 2021), decoding visual 

percepts during binocular rivalry experiments (Krisst & 

Luck, 2022), and reconstructing musical stimuli 

(Ramirez-Aristizabal & Kello, 2022).), to name a few.  

.. 
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and consciousness has resulted in researchers broadening 

the investigative purview of what is considered relevant 

to explaining said phenomena (e.g., Amazeen, 2018; 

Anderson, 2014; Raja, 2018; Spivey, 2007, 2020; 

Sporns, 2003). What can have interested parties do to 

reckon with this data deluge? 

 

Logistically speaking, one way researchers have 

attempted to handle the flood of data is to develop 

infrastructure for the organization and sharing of 

information. In terms of investigative practices, 

researchers have made more central the multiscale nature 

of neural systems. Here, “multiscale” refers to the tools 

and strategies used to investigate neural systems. Such 

treatments in neuroscience include researchers explicitly 

appealing to brain models that integrate data at different 

spatial and temporal scales. For instance, strategies that 

combine models developed from principles of neuronal 

biophysics (i.e., bottom-up) with models developed from 

recorded neuronal activity (i.e., top-down; D’Angelo & 

Jirsa, 2022). Other strategies center on exploring ill-

understood phenomena at multiple scales to obtain 

understanding (Haueis, 2022). Here, neuroscience 

practice is understood as having important roles for 

models that are not aimed at explanation per se, but at 

probing features of the target system and testing our 

conceptual understanding of them. Another example are 

those strategies that attempt unification across scales via 

the application of experimental paradigms previously 

successful at single scales. An illustrative case in this 

regard is research that expanded and incorporated a 

model originally developed to explain one phenomenon, 

that is, bimanual coordination (Haken et al., 1985), to 

explain relatively smaller scales (i.e., neuronal 

oscillations) and larger scales (e.g., human-machine 

dyads; Tognoli et al., 2020). In that way, phenomena at a 

range of spatial and temporal scales are unified by appeal 

to a core structuring principle, namely, coordination 

dynamics. 

 

It is in the spirit of contributing to “big data 

neuroscience” that the current work is situated. This 

paper aims to offer a strategy for the fruitful investigation 

of the multiscale nature of neural systems by way of a 

strategy called nested dynamical modeling. In order to 

better understand nested dynamical modeling, the next 

section begins with overviews of foundational concepts, 

methods, and theories from dynamical systems  theory 

and synergetics. Then, nested dynamical modeling is 

described and a proof of concept of its application is 

presented. After, some epistemological and theoretical 

consequences this strategy has for neuroscience are 

discussed. 

 

Before explaining the investigative strategy currently on 

offer (i.e., nested dynamical modeling), it is necessary to 

first obtain a grasp of concepts, methods, and theories 

from dynamical systems theory and synergetics, which 

provide its foundations (for detailed explanations and 

references see Favela, 2020a, 2020b). 

 

2. The strategy: Nested dynamical modeling 
 

2.1. Dynamical systems theory 

 

Dynamical systems theory (DST) utilizes mathematical 

tools to evaluate changes and patterns of linear dynamic 

systems. Most systems are “dynamic” in that their 

activity changes over time. The way DST is usually 

applied is by way of a quantitative part that accounts for 

and calculates variables via difference or differential 

equations and a qualitative part that visually depicts the 

range of possible states over time via a state space plot. 

Nonlinear dynamical systems theory (NDST) applies this 

approach to nonlinear phenomena, which, in the most 

basic sense, are those phenomena that exhibit outputs 

that are not proportional to its inputs (e.g., exponential 

and multiplicative). 

 

When considering their contributions to a research 

strategy, DST and NDST typically aim at discovering 

rules that govern a system’s temporal evolution. These 

rules are depicted by difference or differential equations, 

which are the system’s governing equations. Still, 

equations alone do not necessarily provide understanding 

of the target of investigation. The reason is that 

differential equations, especially of nonlinear 

phenomena, can resist being solved analytically, where 

“analytic” means gaining knowledge of the behavior of 

the system by actually solving the equations. 

Consequently, to obtain a better grasp on system 

dynamics, state space plots are generated. Here again the 

strategy is clearly depicted as having a quantitative part 

(e.g., differential equations) and a qualitative part (e.g., 

state space plots) to help researchers comprehend in ways 

each part alone does not. 

 

To illustrate this strategy when applied to neuroscience, 

consider the FitzHugh-Nagumo model (Izhikevich & 

FitzHugh, 2006). The aim of this model of single-neuron 

activity was to make a simpler version of Hodgkin and 

Huxley’s conductance-based model of neuron ion 
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channels (Skinner, 2006). To do this, the FitzHugh-         

Nagumo model isolates the necessary mathematical     

properties needed to only generate the physiologically-

relevant activity so as to depict the full range of neuronal 

excitation and propagation. This was accomplished with 

the following model of differential equations (Equations 

1 and 2): 

�̇� = 𝑉 −
𝑉3

3
− 𝑊 + 𝐼 

(1) 

 (2) 

 

The three variables are the cell membrane potential (𝑉),  

recovery (𝑊), and stimulus current magnitude (𝐼). 

Plotting the trajectories generated by the equations in a 

state space across two dimensions depicts the full range 

of biologically real behavior (Figure 1). Although the 

applications of DST and NDST can be observed at 

various periods throughout the history of neuroscience 

(Favela, 2022), there is no doubt that they are becoming 

increasingly applied in recent years (Favela, 2021). 

While not as broadly applied in neuroscience, another 

powerful approach that nested dynamical modeling 

draws from is synergetics. 

 

 

 

 

 

  

Figure 1. FitzHugh-Nagumo model. State space plot (top) and time series (bottom) of FitzHugh-

Nagumo model. As in the differential equations model (Equations 1 and 2). The three variables are the 

cell membrane potential (𝑉), recovery (𝑊), and stimulus current magnitude (𝐼). (Modified and 

reproduced with permission from J. Terwilliger, http://jackterwilliger.com/biological-neural-networks-

part-i-spiking-neurons/) 

�̇� = 𝑉 −
𝑉3

3
− 𝑊 + 𝐼 

 

�̇� = 0.08(𝑉 + 0.7 − 0.8𝑊) 
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(2) 

recovery (𝑊), and stimulus current magnitude (𝐼). 

Plotting the trajectories generated by the equations in a 

state space across two dimensions depicts the full range 

of biologically real behavior (Figure 1). 

 

Although the applications of DST and NDST can be 

observed at various periods throughout the history of 

neuroscience (Favela, 2022), there is no doubt that they 

are becoming increasingly applied in recent years 

(Favela, 2021). While not as broadly applied in 

neuroscience, another powerful approach that nested 

dynamical modeling draws from is synergetics. 

 



 

2.2.    Synergetics 

 

Synergetics is a framework for studying systems with 

numerous components interacting across a range of 

spatial and temporal scales. What is more, it emphasizes 

the investigation of qualitative changes at the relative 

macroscopic scale of a phenomenon where new 

functions or structures occur (Haken, 1988; 2006). 

Synergetics is distinguished from other frameworks that 

study more macroscale system features in at least four 

ways. First, it centers on spontaneous processes and 

structures like self-organization. Second, it aims to 

discover general principles (or rules; see previous section 

on DST) that underlie self-organization notwithstanding 

the composition or material of the system’s individual 

parts (Haken, 2016). Third, as alluded to above, 

synergetics understands the macroscopic and 

microscopic spatial and temporal scales of a system in a 

contextual way. That is to say, defining “macroscopic” 

and “microscopic” is dependent upon particular targets 

of investigation, for example, a neuron is “macroscopic” 

to a synapse but is “microscopic” to a neural network. 

Fourth, investigations are guided by the definition and 

application of order and control parameters, two concepts 

defined below. 

 

Like DST and NDST approaches, investigators applying 

a synergetics framework typically aim to identify the 

rule(s) that govern a system’s temporal state evolution, 

with those rules depicted as differential equations. In 

addition, synergetics researchers aim at discovering 

general principles of self-organization, which are stated 

as differential equations that depict a system’s 

macroscopic state. Macroscopic states are defined as 

order parameters in synergetics, which are the collective 

variable that expresses the phenomenon being studied. 

Investigating a phenomenon by way of order parameters 

requires control parameters as well, which are variables 

that guide the system’s evolution. It is worth noting that 

in terms of control and order parameters, the former does 

not cause the latter. The causal relationship of control and 

order parameters is incorrectly understood via linear 

causation. Instead, the proper form of causation is 

circular causality (Haken, 2016). In such systems with 

circular causality, while the order parameter determines 

(to some degree) the activity of the system’s components, 

so too do the control parameters determine the activity of 

the macroscale system activity. To illustrate this, 

consider the now-classic Haken-Kelso-Bunz model of 

bimanual coordination (HKB; Haken et al., 1985). The 

HKB model explains the dynamics and transitions of the 

states of two limbs moving at different frequencies. 

Specifically, the limbs are the index fingers and the 

movements begin with each being anti-phase or in-phase 

positions. Variables for the coordinative states of the two 

fingers is the order parameter and what guides 

coordination are the control parameters (Equation 3): 
 

 �̇� = −𝑎 sin 𝜙 − 2𝑏 sin 2𝜙 (3) 

 

The order parameter captures the overall dynamics of the 

system, which in this model is �̇�. The control parameters 

are finger one frequency 𝑎 and finger two frequency 𝑏. 

Regarding circular causation, a “starting point” in a 

linear causal chain to explain the macroscale dynamics 

cannot be identified among the variables. This is because 

while 𝑎 and 𝑏 contribute to and constrain the dynamics 

exhibited by �̇�, it is also the case that �̇� contributes to 

and constrains the dynamics exhibited by 𝑎 and 𝑏. With 

the concepts and methods of DST/NDST and synergetics 

at hand, the discussion can move to the main strategy of 

the current work: nested dynamical modeling. 

 

2.3. Nested dynamical modeling 

 

Multiscale modeling strategies in neuroscience are not 

new (for a small sample see Breakspear & Stam, 2005; 

Poznanski & Riera, 2006; Siettos & Starke, 2016; Zhang 

et al., 2020). It is arguable that the received view of the 

architecture of the brain would inevitably lead to 

multiscale models. Specifically, understanding the brain 

as having a hierarchical organization entails multiple 

scales, for example, neurons at one scale, cortical 

columns at another, functional brain regions at another, 

and so on. Nested dynamical modeling is a strategy for 

creating models of phenomena comprised of multiple 

spatial and/or temporal scales for purposes of 

exploration, explanation, and understanding (cf. Favela, 

2014, 2015, 2018). The methodological approach is to 

integrate (i.e., “nest”) dynamical models at one scale of 

inquiry within dynamical models at other scales. 

“Scales” are understood in terms of relatively defined 

order and control parameters. That is to say, depending 

on the research target, what is a control parameter at one 

scale and for one target of investigation could be an order 

parameter at another scale and for another target of 

investigation. 

 

The epistemic motivation of this strategy is to facilitate 

comprehensibility of large and complicated data sets        

.. 
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obtained from multiple scales by focusing on the 

necessary mathematical properties needed to only 

generate the physiologically-relevant activity. Such 

“dimension reduction” is commonly required due to 

complex systems phenomena—like neural systems—

readily becoming incomprehensible due to big data 

issues of the sort discussed in the introduction above. 

Granting that nested dynamical modeling requires 

appeals to idealization (Batterman, 2009; Frigg & 

Hartmann, 2020; Potochnik, 2017), the goal is to ground 

the methodology in empirically-verifiable data so as to 

maintain scientific explanatory virtues like control and 

manipulation, prediction, and simplicity without 

compromising realism. In the following subsection, a 

proof of concept of nested dynamical modeling in 

neuroscience research is presented. The proof of concept 

will demonstrate how dynamical models at the scale of 

single synapses can be nested in increasingly 

macroscales up to networks of neurons. 

 

2.3.1. Proof of concept of nested dynamical modeling 

 

The first scale in the proof of concept of nested 

dynamical modeling is model of individual synaptic 

activity (Equation 4 [A in Figure 2]): 

 
 

 𝐼synaptic(𝑡) =  ∑ 𝑔𝑖

𝑖

(𝑡)(𝐸𝑖 − 𝑣) (4) 

 

In this model of synaptic activity, the order parameter is 

𝐼, which denotes the sum of all input currents that 

includes experimentally-validated biological features 

like time-varying conductance (𝑔𝑖(𝑡)) and molecular 

chemical activity (𝑖 = AMPA, GABAA, GABAB, and 

NMDA), or the control parameters. Other variables are 

defined as 𝑣 = voltage and 𝐸 = reverse potential of the 

molecular chemical activity. The model of synaptic 

activity (Equation 4) can be nested within a model of 

single-neuron activity (Izhikevich, 2010; Equations 5 

and 6): 
 

 𝐶�̇� = 𝑘(𝑣 − 𝑣rest)(𝑣 − 𝑣thresh) −  𝑢 +  𝐼 (5) 

 �̇� = 𝑎[𝑏(𝑣 − 𝑣rest) − 𝑢] (6) 
 

 

This model of spiking neurons and recovery variable (𝐶�̇� 

and �̇�) demonstrates features like threshold (𝑣thresh) and 

voltage resting (𝑣rest) states. In order to nest the model 

of synaptic activity (Equation 4) within a model of 

spiking neurons, that model (Equations 5 and 6) must 

first be simplified into an equivalent but more general 

form (Izhikevich, 2010; Equation 7 [B in Figure 2]): 

 

 �̇� = 𝑓(𝑣, 𝑢) + 𝑔(𝑡)[𝐸(𝑡) − 𝑣] + 𝐼 (7) 

 

In this simpler form, the spiking neuron model (Equation 

7) nests the synaptic term (𝐼; Equation 4). Thus, the order 

parameter is single-neuron activity (�̇�) with various 

control parameters, especially synaptic activity (𝐼), 

which was the order parameter at a different scale. 

 

It is worth pausing here to stress that biological realism 

is maintained during the nesting step from Equation 4, to 

5 and 6, and then to 7. Note that all activity of the 

individual synaptic activity model is nested within the 

model of single-neuron activity. Consider that if all of the 

molecular chemical (e.g., AMPA, GABAA, GABAB, and 

NMDA) activity exhibited during synaptic activity were 

yet to be identified, it would still be possible to develop 

a model of single neuron activity that is biologically 

realistic (Equations 5 and 6). This is because it would be 

based on empirically-verified data. Still, with the current 

situation that the molecular chemical properties of 

synapses being known, more detailed information can be 

obtained from the model by “zooming” in on the values 

constituting the 𝐼 term. If such details were not known, 

the general model of single-neuron activity (Equation 7) 

would still be considered a justifiable explanation. The 

same, as will be shown, holds true as the nesting moves 

to increased macroscales. 

 

The next step is the nesting of single-neuron activity 

(Equation 7) within a neuronal network model. 

Izhikevich and Edelman (2008), neuronal network model 

of the mammalian thalamocortical system is defined in 

terms of total synaptic connections, where each neuron is 

defined as a “compartment” connected to other 

“compartments.” The model for total synaptic activity at 

each compartment of the neuronal networks is as follows 

(Equation 8 [C in Figure 2]): 

 

 𝐼syn

= 𝑔AMPA(𝑣 − 0)

+ 𝑔NMDA

[(𝑣 + 80)/60]2

1 + [(𝑣 + 80)60]2
(𝑣 − 0) 

+𝑔GABAA
(𝑣 + 70) + 𝑔GABAB

(𝑣 + 90)

+ 𝐼gap 

(8) 

 

Note that 𝐼gap defines the gap-junction current with 

decaying conductance based on distance between 
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neighboring neuronal soma. This model nests the �̇� term 

from Equation 7, thereby shifting it from an order 

parameter at the previous scale to a control parameter in 

the current scale. In order to nest the neuronal network 

compartment model (Equation 8) within the next scale, it 

must first be simplified into an equivalent but more 

general form (Izhikevich & Edelman, 2008). Here, the 

activity of Equation 8 is defined by the single term �̇�, 

which serves as the order parameter, and gives the 

following (Equation 9 [D in Figure 2]): 
 

 �̇� = (𝐼syn(𝑧)) − 𝑦/500 (9) 

 

This model (Equation 9) can be nested within a model of 

more macroscale activity, namely, from a compartment 

of neuronal network activity to a larger neuronal network 

across a brain region (Rubinov et al., 2011). The model 

of brain region neuronal activity is as follows (Equation 

10 [E in Figure 2]): 
 

 
𝐶

𝑑𝑉

𝑑𝑡
= 𝐶

𝑑𝑦1

𝑑𝑡
= −𝑔𝑦1 + 𝑦2 − 𝑦3 

(10) 

The order parameter �̇� from Equation 9 is now a control 

parameter nested within Equation 10, which models an 

increased macroscale of activity. This model depicts the 

integration of synaptic currents across all neuronal 

activity in a brain region. Here, 𝑦1 is equivalent to �̇� in 

model of more microscale activity (Equation 9), with the 

other variables serving control parameters capturing 

experimentally-verified biological features like 

membrane conductance (𝑔). Variables are defined as 𝐶 = 

membrane conductance, 𝑔 = leakage conductance and 

𝑦 = synaptic currents, where 𝑦1 is the current across one 

dimension and 𝑦2 and 𝑦3 expand model to capture 

currents across three dimensions (Rubinov et al., 2011, 

supporting information 1). A visual depiction of the 

nesting relationships among this models is presented in 

Figure 2. There, it is clearly presented how variables that 

serve as an order parameter at one scale becomes a 

control parameter at a more macroscale. With a better 

sense of what nested dynamical modeling is and this 

proof of concept at hand, potential epistemological and 

theoretical consequences for neuroscience are discussed 

in the next section

 

 

 

 

 

 

 

 

 

Figure 2. Proof of concept of nested dynamical modeling. (A [in text Equation 4]) Individual synapse activity 

model with product 𝐼 (red). (B [in text Equation 7]) Model of single-neuron activity with product �̇� (blue). 

Here, the red arrow indicates the nesting of a variable that was an order parameter from one model into another 

model, and now playing the role of a control parameter. (C [in text Equation 8]) Model of compartment of 

neuronal network synapse activity. Here, the blue arrow indicates the nesting of order parameter variable �̇� 

into another model as a control variable. (D [in text Equation 9]) Equivalent simplified model of compartment 

of neuronal network synapse activity with product �̇� (green). The equivalency of (C) and (D) is identifiable 

via the “≡” notation. (E [in text Equation 10]) Model of networks of neurons. Here, the green arrow indicates 

the nesting of order parameter �̇� into a model at an increased macroscale to serve as a control parameter. 
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3. Some consequences for neuroscience 

The purpose of this section is to explore what, if any, 

epistemological and/or theoretical consequences the 

nested dynamical modeling strategy has for 

neuroscience. First, what consequences might nested 

dynamical modeling have for the particular theoretical 

aspects of neuroscience? One potential consequence 

concerns causation. Like most (if not all) of the other 

biological and social sciences, neuroscience is arguably 

understood as assuming a kind of unidirectional and 

sequential sense causation. That is to say, that neural 

phenomena have starting points and ending points, with 

a chain of steps in between. It is true that many neural 

phenomena exhibit nonlinearities and feedback. 

However, those are also understood as causal in the 

unidirectional and sequential sense. Consider, for 

example, Bayesian approaches to neuroscience like 

predictive processing (Clark, 2013). An illustrative 

example of predictive processing is when somebody 

hears a sound (sensory input), thinks it is a song they 

know (current prediction based on prior expectation), but 

then they realize it is not the song they thought 

(prediction error followed by updated prior). Upon 

realizing it is not the song they thought it was, the next 

time they hear it they will not have the same incorrect 

perceptual expectation. Feedback is displayed here in the 

form of the sensory input not confirming the prior 

expectation and then the next time the sensory input is 

received having a new expectation. While there is 

feedback, it is unidirectional in that the causal chain is 

sequential, for example: prior expectation → sensory 

input → prediction error → etc. 

 

The wealth of research in synergetics has demonstrated 

that much neural physiology and related behavioral and 

cognitive capacities operate not in such unidirectional 

and sequential causal chains; rather, they exhibit circular 

causation (e.g., Fingelkurts et al., 2013; Haken & 

Portugali, 2016; Kozma & Freeman, 2016; for additional 

discussion see Buzsáki, 2006; Favela, 2020a). As 

discussed above, if the order and control parameters 

strategy is appropriately applied to modeling a system, 

then it is likely the case that the phenomenon exhibits 

circular causation in the form of its macrostates (order 

parameter) simultaneously constraining and being 

constrained by its microstates (control parameters). Such 

relationships are not properly understood via 

unidirectional and sequential causation. Consequently, 

nested dynamical modeling, like synergetics, may force 

neuroscience to rethink some of its theoretical aspects, 

such as the kind of causation it is committed to. 

 

Another theoretical consequence, though not as broad as 

notions of causation, centers on the intersection of nested 

dynamical modeling and a well-known contemporary 

theory of consciousness: the integrated information 

theory (IIT) of consciousness. IIT is a scientific theory of 

consciousness aimed at describing the essential 

properties of consciousness (i.e., “axioms”) and then 

inferring the necessary features of the physical systems 

that can support such properties (i.e., “postulates;” e.g., 

Tononi, 2015; Tononi & Koch, 2015). Part of IIT’s 

popularity (and controversy; for a review of challenges 

see Merker et al., 2022) concerns its attempt to define 

consciousness via a quantifiable value. As indicated by 

its name, IIT defines the consciousness of a system 

primarily via the integration and information axioms and 

postulates, which underlie the amount of integrated 

information, or Φ (“phi”). Over the course of various 

iterations of IIT, proponents have supplemented the 

theory with the claim that each system can only have a 

single consciousness that is defined as its maximum Φ 

(ΦMax; Hoel et al., 2016). While arguments have been 

made to attempt to defend the notion of ΦMax on grounds 

of parsimony (i.e., “it is simpler for one system to have 

one consciousness then to have multiple 

consciousnesses”), critics have not been persuaded. 

Schwitzgebel (2015), for example, has argued that IIT 

has no in principle reason for denying that one system 

can house multiple consciousnesses simultaneously. The 

line of argument goes that if consciousness just is 

information integration, then anywhere there is 

integrated information there will be consciousness. 

Consequently, even if an intuitively conceived spatially-

temporally isolated entity has various coinciding 

instances of integrated information, then that entity will 

have multiple consciousnesses simultaneously. Humans, 

for instance, have multiple coinciding locations where 

information is integrating, even in the brain alone. 

Therefore, IIT is committed to stating that humans can 

have multiple consciousnesses at a time. 

 

It is unclear if nested dynamical modeling or other 

multiscale modeling strategies can help to arbitrate this 

issue. As discussed above, nested dynamical modeling, 

like synergetics, motivates openness to acknowledging 

different notions of causation than are typical of much 

standard scientific practice in the biological and social 

sciences. Recent iterations of IIT have made more           
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explicit that integrated information has causal powers, 

such that the ΦMax of a system has specific causal 

capacities that other Φ values even within the same 

system would not (e.g., Hoel et al., 2016). Different 

causal capacities alone do not rule out the kind of 

multiple consciousnesses that critics like Schwitzgebel 

claim are allowed by IIT. In addition, if nested dynamical 

modeling does not privilege any particular scale of 

investigation, and thus does not hold a priori where 

causal capacities can be located, it is unclear if its 

methodology could support an in principle case for single 

consciousness (i.e., ΦMax) among multiple other possible 

simultaneous consciousness states (i.e., other Φ values in 

the same system). In this way, perhaps nested dynamical 

modeling allows for far too promiscuous of a theoretical 

basis for neuroscience. 

 

Second, what consequences could nested dynamical 

modeling have for the epistemology of neuroscience? 

One consequence concerns the goals of neuroscience. 

Specifically, is the only or primary goal of neuroscience 

research to provide explanations of targets of 

investigation? Building on arguments made by Haueis 

(2022), the big data nature of neuroscience forces 

neuroscientists to confront themselves about what they 

are aiming for when they use multiscale modeling 

approaches. It is arguable that much multiscale modeling 

work does not appear to provide “explanations” of target 

phenomena and are thus referred to as merely 

“descriptive,” where that term is used in a derogatory 

sense. Haueis can be understood as arguing that 

multiscale modeling work in neuroscience need not be 

either explanatory or descriptive. Instead, it can be 

readily understood as “exploratory.” Multiscale 

modeling qua exploratory research may not always 

provide or be for the purpose of explanation. They can 

serve other epistemically valid purposes, such as getting 

a future line of inquiry going, provide proof of principle, 

be potential explanations, and allow for reassessing how 

to think about targets of investigation (Haueis, 2022). 

Nested dynamical modeling is readily understood along 

these lines. As such, it contributes to examples and 

arguments in favor of viewing exploratory research in 

neuroscience as being a respectable way to conduct day-

to-day business. 

 

Another epistemic consequence of nested dynamical 

modeling concerns reasons for excluding or prioritizing 

certain kinds of explanation over others. For nearly 30 

years, a majority of philosophers of science have argued  

that the search for mechanisms is the most fundamental 

kind of explanation in the life sciences (e.g., Bechtel & 

Abrahamsen, 2005; Craver & Darden, 2013), including 

neuroscience (e.g., Piccinini, 2020). Many criticisms 

have been made against this position (e.g., Silberstein, 

2021) and in defense of the validity of other kinds of 

explanation. For example, Chemero (2009) argues that 

dynamical systems theory modeling can provide 

explanations of phenomenon on their own (e.g., HKB 

model of bimanual coordination; Haken et al., 1985), 

without necessitating mechanistic features. Favela 

(2020a) argues that complexity science provides 

explanations via an investigative framework consisting 

of fruitful concepts, methods, and theories, some which 

adhere to commitments contrary to some mechanistic 

requirements for purported complete explanations. 

Lange (2017) defends the viability of non-causal 

explanations, such as those in pure mathematics, which 

are explanatory in virtue of proofs and particular formal 

properties, like Euler’s theorem. Ross (2023) also 

focuses on the notion of causation and argues that 

mechanisms do not capture the only kind of causation 

appealed to in the biological sciences; others, like 

cascades, are causally significant, while not being a 

distinct form of mechanism. 

 

If nested dynamical modeling is a viable investigative 

strategy, one that exhibits various epistemic virtues (e.g., 

prediction, simplicity, etc.), then it—and other multiscale 

approaches—can help to dissolve the debate about which 

kind of explanation rules them all. The reason is that such 

multiscale strategies do not seem readily categorized 

under one of the common explanatory approaches. Is 

nested dynamical modeling a mechanistic approach? Yes 

and no: yes, because it can be appealed to as a way to 

identify specific causally-relevant features of a system 

(e.g., quantified synaptic activity in Equations 4, 7, and 

9) via localization. But no because certain multiscale 

models resist common mechanistic methods (e.g., 

decomposition and localization) and favor interpretations 

more readily understood in terms of covering-law 

explanations. For example, Rubinov, et al (2011) expand 

Equation 10 to incorporate the universality class of self-

organized criticality, which can be understood as serving 

the role of a covering law in this case. It may be the case 

that nested dynamical modeling and other multiscale 

modeling approaches make the case not for one particular 

explanatory kind over others, but for explanatory 

pluralism (Favela & Chemero, 2021). 
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