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Abstract      

We derive an approximate analytical solution of a nonlinear cable equation describing the backpropagation of action 

potentials in sparsely excitable dendrites with clusters of transiently activating, TTX-sensitive Na+ channels of low density, 

discretely distributed as point sources of transmembrane current along a continuous (non-segmented) passive cable structure. 

Each cluster or hotspot, corresponding to a mesoscopic level description of Na+ ion channels, included known cumulative 

inactivation kinetics observed at the microscopic level. In such a reduced third-order system, the ‘recovery’ variable is an 

electrogenic sodium-pump and/or a Na+- Ca2+ exchanger imbedded in the passive membrane, and a high leakage conductance 

stabilizes the system. A nonlinear cable equation was used to investigate back-propagation and repetitive activity of action 

potentials, exhibiting characteristics of the modified Hodgkin-Huxley kinetics (in the presence of suprathreshold input). In 

particular, a time-dependent analytical solution was obtained through a perturbation expansion of the membrane potential 

(V) for all voltage-dependent terms including the voltage-dependent Na+ activation (m) and state-dependent inactivation (h) 

gating variables and then solving the resulting system of integral equations. It was shown that backpropagating action 

potentials attenuate in amplitude are dependent on the discrete and low-density distributions of transient Na+ channels along 

the cable structure. A major significance of integrative modeling is the provision of a continuous description of the non-

dimensional membrane potential (Φ) as a function of position. 

 

Keywords: Sodium ions, spike trains, backpropagating action potentials, sparsely excitable dendrites, integrative modeling, 

ionic cable equation, Green’s functions. 
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1. Introduction 
 

The ad hoc application of computational modeling to 

excitable dendrites (exhibiting a variety of exotic 

membrane currents) has underestimated the 

epistemological limitations of the Hodgkin-Huxley 

(H-H) equations. Single-cell patch-clamping 

techniques have revealed a rich repertoire and 

diversity of voltage-dependent ion channels in the 

dendrites of almost all neurons. As well, dendrites 

contain an abundant number of ligand-gated channels 

and extrasynaptic receptors juxtaposed with voltage-

dependent ion channels a discrete spatial location. 

 

Action potential trains have been shown to 

backpropagate into the dendritic trees of several 

different varieties of neurons from 

electrophysiological recordings made with patch 

pipettes along its arbors e.g., (Golding et al., 2001; 

Stuart et al., 1997). Voltage-gated sodium (Na+) 

channels on  the  somatodendritic surface of neurons  

have been mapped with patch-clamp recordings (e.g., 

Magee & Johnston, 1995; Stuart & Häusser,1994). 

However, insofar as the spatial distribution of 

individual sodium (Na+) channels is concerned, the 

problem remains unresolved. In most circumstances, 

it is indirectly referred to and/or assumed to be non-

sparse, uniform, or homogeneous. However, a 

homogeneous distribution does not imply a 

continuous distribution since recordings using patch-

pipettes are measured discretely at a few selected 

points (Magee & Johnston 1995; Stuart & Häusser, 

1994). The channel pores through which the Na+ ions 

must flow to bring about an action potential are 

presumably only 10 Angstroms (or 0.001μm) in 

diameter. Therefore, a continuous distribution of 

channels is very difficult to show with patch-clamp 

analysis because a differential current density does 

not always imply distinct densities of channels, 

requiring an indefinite large number of patch-clamp 

estimates of channel density (for reviews, see 

Johnston et al.,1996; Migliore & Shepherd, 2002; 

Stuart & Spruston, 1995).   



Earlier studies with patch-pipettes revealed Na+ 

channels to occur predominantly on the somata and 

along the primary dendrites of neocortical pyramidal 

cells   (Huguenard et al., 1989; Stuart & Häusser, 

1994).    The predisposition for such localization was 

partly due to synapses impinging distally (and 

therefore leaving a greater accumulation of Na+ 

channels for the proximal dendrites), which can invoke 

full-blown Na+ action potentials initiated through 

strong synaptic stimulation (Regehr et al., 1993). 

Indeed,   dendritic hotspots of glutamate sensitivity in 

neocortical pyramidal dendrites attest to the density 

distribution of synapses in distal regions of dendrites 

being sparsely distributed (Frick et al., 2001). 

However, there are exceptions, for instance, in some 

sensory neurons, like mitral cells of the olfactory bulb 

(Bischofberger & Jonas,       1997) and amacrine cells of 

the retina (Yamada et al.,2002) which appear to initiate 

dendritic action potentials with forward propagation to 

the               soma in both mitral cells (Chen et al., 2002),           and 

amacrines (Miller & Dacheux, 1976). Stuart & 

Häusser (1994) hypothesized that dendrites of 

Purkinje cells have a higher-threshold for action 

potential activation in comparison with the soma/axon 

hillock suggesting a low density of Na+ channels and, 

therefore, resolving the issue of how dendritic Na+ 

channels boost backpropagating action potentials 

(BAPs), while failing to support dendritic initiation. 

Indeed, dendritic spikes have a much slower time 

course of rise compared to action potentials which would 

indicate a relative sparseness of Na+ channels, 

attributable to a high threshold for opening Na+ gates, 

about 30mV. 

In hindsight, a decreased membrane area exposed to 

voltage-dependent ionic channels (like Na+ channels) as 

a consequence of impinging synaptic and 

extrasynaptic receptors (absent in axonal 

membrane), and the presence of Na+ channels 

needed to elucidate both forward and BAPs, implies a 

uniform yet the sparse distribution of Na+ channels 

in dendrites.   In the case of the squid axon, the known 

density of Na+ channels reaches 1000 µm2 (Hodgkin, 

1975), and the average distance between such channels 

is approximately 0.01 µm. Therefore, ion flows 

during nerve activity appear at sparsely distributed 

sites (Ehrenstein & Lecar, 1972). However, the effect 

of the discreteness on both the voltage and the kinetics 

of the membrane response may be negligible 

(Mozrzymas & Bartoszkiewicz, 1993). In the case of 

CA1 hippocampal dendrites, for example, the average 

density of Na+ channels is only about 10 µm2 

(Magee & Johnston, 1995), leaving the average 

distance between such channels to be approximately     

1                                                                                           

1 µm apart. Therefore, the effect of the discreteness 

between such channels will be apparent. 

 

To develop realistic input/output functions of                     dendritic 

integration that incorporate all the complexities 

introduced by active dendrites in a   biophysical model    

(Reyes, 2001), it is important to introduce a 

heterogeneous membrane with voltage-dependent ionic 

channels and, in particular, Na+ channels as discrete 

macromolecules, sparsely distributed along dendrites 

(Hille, 2001).   The modeling               of such dendrites requires 

the enforcement of a heterogeneous excitable 

membrane rather than a ‘weakly’ or homogeneous 

excitable membrane, for which the former ascribes to a 

low density and a discrete spatial distribution of 

channels          along the dendrites. In contrast, the latter 

does not ascribe to the discrete distribution of channels. 

Indeed, in earlier models of active   dendrites, a low or 

diminished excitability (i.e., a low density of channels) 

through scaling the conductances without invoking a 

discrete spatial distribution of channels (see, e.g., 

Horikawa, 1998; Rapp et al., 1996; Sabah & Leibovic, 

1972) was assumed. Evidence for a relatively sparse 

density in the spatial distribution of transient Na+ 

channels comes indirectly from the observed decrement 

in the amplitude of BAPs trains affected by cable 

properties, including the distribution and locus of Na+ 

channels and their prolonged inactivation (Jung et al., 

1997), and slow inactivation (Callaway & Ross, 1995; 

Colbert et al., 1997;  Jung et al., 1997; Mickus et al.,         

1999) as well as frequency-dependent dendritic Na+ 

spike broadening (Lemon & Turner, 2000). 

 

Williams & Stuart (2000) have identified two important 

factors controlling the modification of  BAPs trains: (i) 

the recruitment of distal dendritic Na+ and Ca2+ channels 

and (ii) the cumulative inactivation of dendritic Na+ 

channels. To our knowledge, such mechanisms have 

not been incorporated into biophysically realistic 

models. This represents a significant challenge because 

earlier analytical work dealing with (V,m,h) reduced 

systems (see FitzHugh, 1960) failed to qualitatively 

reproduce the pulse recovery necessary for repeated 

firing for BAP trains. In an attempt at modeling such 

phenomena under current-clamp conditions, the so-

called ionic cable theory, as advanced by Poznanski 

& Bell (2000a,b) (for small voltage perturbations from 

rest), can be extended to analytically solve such 

nonlinear problems for trains of BAPs along a dendritic 

arbor, with a spatially discrete distribution of Na+ 

channels. This approach differs from previous 

approaches in that complete       analytical resolution is             

-                    
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feasible without too many simplifying assumptions 

concerning the kinetics of gating currents.    The Na+ 

activation is not simply a function of voltage but also 

a function of time. Hence, reduced models which 

assume Na+ activation to be sufficiently fast to be 

described by its equilibrium value are too simplistic 

and inappropriate for modeling BAPs in vivo (e.g.,     

Casten et al., 1975; Kepler et al., 1992; Krinskii & 

Kokoz, 1973;  Penney & Britton, 2002; Rinzel,1985; 

Wilson, 1999). 

 

The need for a new cable-modeling methodology is 

twofold. Firstly, compartmental models used to 

study BAPs (see, e.g., Antic, 2003; Doiron et al., 

2001; Lüscher & Larkum, 1998; Mainen et al., 

1995;  Migliore, 1996;  Rapp et al.,1996), discretize 

the continuous membrane of the neuron into a 

discrete set of interconnected isopotential 

compartments that leads to presumptive conclusions 

such as ‘local- subunits’   in   dendrites   (Mel   1993;   

Poirazi et al., 2003). However, the spatially 

discretized nature of voltage and channel kinetics 

employed in compartmental models warrants a 

closer look. During initial voltage that results from 

a localized action potential, large amplitude voltage 

gradients leave the membrane potential in an 

isopotential state. Secondly, numerical methods like 

compartmental models suffer from too many degrees 

of freedom resulting in a non-uniqueness problem. This 

has been succinctly articulated by Frankenhaeuser & 

Huxley (1964), p.306: “The equation system is so 

involved that it is impossible in most cases to get even 

a fair idea of the effect of a change of a single value 

without going through a complete computation.” In 

other words, the non-uniqueness problem and the 

accumulation of numerical errors can raise concerns 

about the uniqueness and accuracy, typically 

requiring that each time a single parameter change 

occurs, a complete evaluation of the entire set of 

equations is required. 

 

The main issue of our concern is the conclusions 

made by Van Ooyen et al. (2002) and Schaefer et al. 

(2003) that subtle structural differences in 

morphology within a population of neurons are 

sufficient to explain the functional variability in 

dendritic function. This is in agreement with earlier 

studies showing that branch points (equivalent to a 

step decrease in the cable diameter) could behave 

as a point  of   higher   excitability   referred   to   as a 

‘hotspot’ (Dimitrova & Dimitrov 1991), but 

contrasts with the conceptual presumption that the        

.            

 

spatial distribution of identical ion channels in a 

particular class of neurons has significant functional           

importance in determining intraneuronal infor-               

mation processing (Holden, 1981). Thus, the notion 

of BAPs depending primarily on morphology (i.e., 

electrotonic geometry) rather than membrane 

properties can be tested using ionic cable theory by 

showing that the spatial localization of distributed ion 

channels in non-space-clamped structures does 

matter functionally. Geometrical inhomogeneities 

(i.e., step decrease in the cable diameter or a branch 

point) per se are morphological but, to a lesser extent, 

functional formations (see   Altenberger et al., 2001).         

          

      
                 

 

 

 

 

 

 

 

 

 

 

The notion behind ionic cable theory is to incorporate 

the density distribution of specific proteins subdivided 

into two classes, carriers and pores (ion channels), into 

passive cable models of neural processes by distributing 

these specific voltage-dependent ionic currents 

discretely. In particular, we will consider an all Na+ 

system like that found in rabbit myelinated axons (Chiu 

et al., 1979) or pyramidal dendrites in the 

electrosensory lateral-line lobe of weakly electric fish 

(Turner et al. 1994) with discrete loci of Na+ channels 

or hotspots as active point sources of transmembrane 

current, imposed on a homogeneous (non-segmented) 

leaky cable structure with each hotspot assumed to 

occupy an infinitesimal region containing a small 

cluster of fast pores called Na+ channels in the presence 

of ion fluxes due to active transport processes, such as 

Na+- Ca2+ exchanger and Na+-pump imbedded in the 

lipid bilayer membrane as proteins specialized as slow 

carriers. 

 

 

 

 

 

  

 

 

        

              

 

Figure 1: A schematic illustration of a dendrite of 

diameter d (µm) studded with clusters or hotspots of Na+ 

ionic channels. The arrow above the hotspot reflects the 

notion of INa representing a point source of transmembrane 

current  imposed on an infinitesimal area on the cable. The 

symbol N            denotes the number of hotspots, and N*∗ denotes 
the number of Na+ channels in each hotspot per 

membrane surface of the cable, represented schematically 

as dark spots. The total number of Na+ channels is given 

as NN*∗. 
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2.   The cable equation for discretely imposed Na+ 

channels 
 

Let V(x, t) be the depolarization along a cable (i.e., 

membrane potential less the resting potential) in mV, 

and let INa be the nonlinear functional of membrane 

potential representing the  transmembrane Na+ current 

density per unit membrane surface of dendritic cable in 

(mA/cm). The voltage response (or depolarization) 

along a leaky cable representation of a cylindrical passive 

dendritic segment with ionic channels occurring at 

discrete points along the cable (see Fig. 1) satisfies the 

following cable equation: 

 

         
 

where x is the distance in cm, time t is in msec, d  is the 

diameter of the cable in cm, Cm = cm/πd is the 

membrane capacitance per unit area (F/cm2),    Rm= 

rmπd is the membrane resistivity (Ωcm2), ρi = riπd2/4 

is the cytoplasmic resistivity (Ωcm),                N is the number 

of clusters of Na+ channels or hotspots 

(dimensionless), INa−Ca is the sodium-calcium 

exchanger current density in mA/cm, INa(pump) is the 

sodium-pump current density per unit membrane 

surface of dendritic cable in mA/cm, and δ is the 

Dirac-delta function reflecting the axial position 

along the cable where the ionic current is positioned 

in cm−1 (see FitzHugh,1973) with the suprathreshold 

(current) injection at location x = 0, the pump location 

at x = xz, and ionic channel locations at x = xi. 

 

Equation (1) can be cast in terms of non-dimensional 

space and time variables, X = x/λ and T = t/τm, 

respectively, where λ = (Rmd/4 ρi)1/2 and τm = RmCm 

are, respectively, the space and time constants in 

cm and msec. Thus Eqn (1), after using δ(λX) = 

δ(X)/λ , becomes 
 

 
   

 where T > 0, 0 < X < L, l is the physical length in 

cm, L = l/λ is the electrotonic length, X = x/λ represents 

loci along the cable of ionic current, expressed in terms 

of the dendritic space constant λ, and I     is the 

nonlinear transient Na+ transmembrane current density 

per unit membrane surface of cable (µA/cm) 

(expressed as a sink of current since by convention 

inward current is negative and outward is positive) 

based  upon the H-H gate formalism and the constant-

field equation (Chiu et al., 1979; Dodge & 

Frankenhaeuser, 1959; Frankenhaeuser    & Huxley, 

1964): 
 

     
 

with Ƒ, R, and T are the Faraday-constant (Ƒ = 96480 

C/mol), the gas constant (R = 8.315 J/K/mol), and 

the absolute temperature (T = 273.15 K), PNa is the 

maximum permeability of Na+ ions (µm/sec), [Na+]e is 

the external Na+ concentration in mM, VNa = ENa - 

ER, ER = -70 mV is the resting membrane potential, and 

ENa = 65 mV is the Na+ equilibrium potential 

conductance, which is similar but not equivalent  to the 

permeability, i.e., 

         

where gNa    denotes  the maximum N+  conduc- 

tance per unit membrane surface of   cable (µS/cm) 

given by (Hodgkin 1975): 

 

             

and N∗  is the number of transient Na+ channels per 

unit membrane surface of cable in cm−1,                           and g*
Na   =  

18pS  is  the  maximum  attainable conductance of a 

single Na+ channel (Sigworth & Neher,1980; 

Stühmer et al., 1987). Possible nonuniform                          

. 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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distribution of channels can be determined from Eqn 

(5) by redefining the number of channels as a 

function of space, i.e.,   gNa(X)   =   g*
Na N

*(X)  so  that  

at  location X = Xi there  will  be  N∗(Xi) =  θ(Xi)/πd 

Na+ channels,   where θ(Xi)  ≡  θi   is the number 

of Na+ channels per ith hotspot and assumed to be 

a nonuniform function with distance along the cable. 

For a nonhomogeneous distribution with greater 

occurrence on somata and near the primary branches 

of large dendrites, an appropriate function could be 

exponentially decaying in the somatofugal direction 

θi =ρ exp(γNaXi) where γNa > 0 and ρ > 0 are 

constants. 
 

3.   Scaling   the   macroscopic   Na+   current 

density 

A mesoscopic Na+ current density at discrete loci 

along the dendritic cable associated with            only a low 

density of Na+ channels can be approximated 

heuristically from a nonlinear (instantaneous) input I-

V (iNaP) relationship                      obtained by Hodgkin & Huxley 

(1952) based on  observations of macroscopic currents 

at different voltages using the voltage-clamp 

technique. A space-clamp of the membrane and a 

voltage clamp of that membrane allowed them to set 

and hold the membrane potential                                             at a particular value 

to determine the underlying ionic current. Such 

currents are macroscopic because they reflect an 

assemble average of many localized Na+ channels. 

However, the effects of electromagnetic properties on 

dendritic structure produce an inadequate space-clamp 

upon signal properties, making it unlikely to predict a 

‘whole-cell’ current from somatic recording. In 

practice,             however, the value of INa along the cable at 

loci Xi will be determined from the value of V at that 

point. Therefore, an equation analogous to Cole’s 

theorem could connect the membrane I-V relation (INa) 

with the input I−V relation (iNa) obtained using a 

single-channel patch-pipette recording. This is 

because, in most cases, the input I−V relation is less 

nonlinear than the membrane I−V relation as expressed 

by the relationship: 
 

       
 

where Vo and VL represent (dimensional) V at X = 

0 and X=L, respectively, in practice, Eqn (6) is 

limited to using a dual intracellular recording method 

to measure the voltage at two distinct points in the 

presence of pharmacological agents, which block all                              

ion channels that could  

other   voltage-dependent   ion   channels   that   could                 

intrude at those particular             chosen loci. Theoretically, 

the H-H gating formalism can be replaced using Eqn 

(6) as   a heuristic approximation of the macroscopic 

Na+ current density. However, it is experimentally 

difficult to yield a dual-patch estimate at both ends 

of a dendrite (Schaefer et al., 2003). 

 

The assumption that the “whole-cell” conductance 

equals the single channel conductance times the 

number of channels is limited to the somata of 

neurons as dendrites are rarely perfectly space-

clamped, so determining the number of channels at 

the soma could, in principle, only approximate the 

number per unit surface of a dendrite. As it is 

experimentally difficult to obtain a true estimate of 

the “whole-cell” conductance, a spatial “scaling” of 

the macroscopic Na+ current is performed through 

a spatial “scaling” parameter ϵ because, unlike the 

“whole-cell” macroscopic current, the current per 

dendritic patch involves only a small cluster of Na+ 

channels. Hence, in the analysis that follows, ϵ will 

be considered small.    Thus, the Na+ transmembrane 

current density per unit membrane surface of cable 

(µA/cm) represented by Eqn (3) and expressed in 

terms of a conductance Eqn (7) and can be 

approximated                                                as follows: 

   

 

 

  

 
 

where ϵ<<1 is a small parameter calling the 

‘whole-cell’ macroscopic transmembrane current 

density of Na+ channels, and µ(V), η(V) represent 

ensemble averages of the activation and inactivation 

gating variables, respectively, of the mesoscopic 

current density per unit length the mesoscopic 

current density per unit length of cable 

(dimensionless). It should be noted that the 

macroscopic current density is a good 

representation of reality for large θi (>>100), 

compared to the mesoscopic current density, which is 

a good representation for moderate values of             

θi (>> 1). For example, Hodgkin (1975) estimated an 

optimum density of Na+ channels to be about θi = 

500/µm2 in a 0.1µm diameter axon of the squid, 

while (Magee & Johnston, 1995) estimated the 

number of channels per patch  to average at θi = 

7/µm2 in the dendrites of rat hippocampal CA1 

pyramidal neurons. 
 

(6) 

 
(7) 
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The constant-field model of ion permeation is based 

on steady-state, so the concentration is a function 

of distance only, and so is the presence of the space-

constant (λ) in Eqn. (3)                      is because of the conversation 

from dimensional to non-dimensional space variable 

of ionic flux due to diffusion in accordance with 

Fick’s principle. The macroscopic Na+ current across 

the axon membrane of the giant squid was shown by 

(Hodgkin & Huxley, 1952) to follow a simple linear 

Ohmic relationship expressed through a driving term 

for the ionic current (V−VNa) under the voltage-

clamp conditions when the membrane potential is 

fixed and the instantaneous transmembrane current 

density per unit membrane surface of the cable is 

represented through a linear relationship (Hodgkin & 

Huxley,                         1952): 
 

            

The state variables can be readily solved (Hodgkin & 

Huxley, 1952): 
 

           

where m∞ = αm/(αm + βm) and h∞ = αh/(αh + βh) are 

the steady-state values of the activation m [V(T)] 

and inactivation h [V(T)], respectively, τµ = 1/(αm 

+ βm) and τh = 1/(αh + βh) are both time-constants,  

and the rate-constants (msec)-1 are: 
 

    
 

This approximation does not necessarily apply to 

other membranes, where for example, ionic flux 

across the dendrite’s membrane is represented by    

the constant-field equation of electrodiffusion (cf. 

Pickard,  1974). If the electrodiffusion of Na+ 

current across the dendritic membrane ‘barrier’ is 

assumed to be nonlinear, then the driving forces due 

to concentration gradients must be replaced with the 

constant-field equations, which take into account the 

effect of the ion concentrations in the membrane 

(Vandenberg & Bezanilla 1991). This is especially 

prevalent at hotspots when spatial ionic 

concentration changes are expected to be large (Qian 

& Sejnowski 1989). In addition to a barrier, there 

are ‘membrane gates’ controlling the flow of Na+ 

(ionic) current, with the time-dependent  gating               

having a lower power for activation from the standard 

H-H model (Chiu et al. 1979; Dodge & 

Frankenhaeuser, 1959; Frankenhaeuser & Huxley, 

1964). 
 

4.   Analytical time-dependent solutions for active 

BAPs 
 

A point near a fictitious soma is current-clamped to 

an action potential response.   Here, we take X = 0 

to be a point current-clamped to a functional 

representation of a single “somatic” nerve impulse 

(Chiang, 1978): 

   

where Uo is the maximum potential (mV), and that  

can be further extended to include a train of  BAPs: 
 

 
where k is an index,     is a scaling factor, R 

indicates the number of action potentials in the spike 

train, ω is the dimensionless interspike interval, and 

H(.) is the Heaviside step function. Equation (9) yields 

the time course of the spike train at a single point, 

namely X=0.We focus on determining the time course 

of active backpropagation of action potentials in non-

space-clamped cables as a perturbation from the 

“somatic” train of BAPs. This is accomplished by 

solving the following equation by inserting Eqn. (7) 

into Eqn. (2) and adding Eqn (9):  

     
 

(8) 

(9) 

(10) 

 

  Volume 2 Issue 2, 2023                             355 

 



≤ 

≤ 

Although Eqn (10) is expressed in terms of non-

dimensional space and time variables, the membrane 

potential must be non-dimensionalized by some 

characteristic value. A reasonable value would be the 

peak (amplitude) of the “somatic” spike Upeak. Hence, 

the non-dimensionalized membrane potential is 

expressed as: 

                            
which allows us to rewrite Eqn. (10) as follows: 

 

 

where Λ =        (mV). Most studies that examine 

traveling wave solutions to nonlinear reaction-

diffusion equations like Eqn (11) use a similarity 

transformation of the independent variables, such as 

ξ  ˃X–cT  (see, e.g.,                Scott, 2002). However, a sparse 

density distribution of ionic channels along the 

dendrite results in the conduction velocity (c) being not 

constant (see Poznanski, 2001). Hence, leading-edge 

approximation of the H-H equations will not yield 

traveling wave solutions as previously explored (e.g., 

Rissman, 1977). 

 

In the present theory, the maintenance of zero ionic 

currents at rest is accomplished with a sodium–pump, 

which counters the resting ionic fluxes to maintain 

equilibrium so that ionic conductances are at their 

resting values and the membrane potential returns to 

the resting state. The pumping rate appears to 

depend on the internal concentrations of Na+, and 

the currents in the giant squid axon are always 

negligible (Moore & Adelman Jr., 1961). In small 

dendrites, however, with much smaller volume-to-

surface ratios than for squid axon, for a 0.1 µm 
diameter at least 5000 times smaller (Hodgkin, 

1975), the metabolic pump activity is sufficiently 

greater because only a few BAPs will affect the 

internal ionic composition. In such a case, the Na+ 

pump could play a significant role in the ionic fluxes 

of the action potential. Consequently, the current 

balance equation at the site of the hotspot reads:   

 

INa-P-INa−Ca  = 0, where P is the outward Na+ pump 

current density and  

where κNa−Ca is a scaling constant representing the 

density of exchanger molecule in the membrane 

(pA/cm/mM), [Na+]i and [Na+]e 
  are concentrations of 

Na+ in the intracellular and extracellular space 

(mM), respectively, [Ca2+]i and [Ca2+]e  are  

concentrations  of  Ca2+ in the intracellular and 

extracellular space (mM), respectively,  and  r  (0   <   

r    1) is the   position of an energy barrier in the 

plasma membrane defined by Eyring theory of 

reaction rates (dimensionless).  

Suppose electroneutrality is maintained everywhere 

by virtue of equal concentrations, then [Ca2+]e = 

[Ca2+]i, and if all Ca2+ channels are assumed to be 

completely blocked, then [Ca2+]e = 0 and [Ca2+]i = 0, 

and therefore INa−Ca = 0. If the outward Na+ pump 

current density is positive (by convention) and resting 

potential ΦR = Φ(0, 0) = 0, then upon using L’Hopital’s 

rule: 

 

 

 

where µo ≡ µ(0) and ηo ≡ η(0).  
 

Assuming the hotspot location X=Xi and the Na+ 

pump location X =Xz are juxtaposed and inserting 

INa−Ca=0 together with Eqn. (12)       into Eqn (11) yields 

 

 

(11) 

 
(12) 

(13) 
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One can decompose the solution of Eqn (13) and 

represent it as a sum of two solutions of cable equa- 

tions at some arbitrary point along the cable X = Xp: 

                                  

 

where Φop(T) is the solution of a linear diffusion 

equation (ϵ = 0): 

 

     

 

and Φ1p (T) remains the solution of a nonlinear 

reaction-diffusion system (ϵ≠ 0): 
 

    

 

 

 

 

 

 

 
 

As described in Iannella & Tanaka (2006) and 

Poznanski (2004), considering hotspots to act as point 

current sources permit Eqn (13) to be reformulated 

as a nonlinear Volterra integral equation through the 

application of the Green’s function method of 

solution to Eqn (14) and Eqn (15) (see Appendix), 

Eqn. (13) can be expressed in terms of a Green’s 

function G as follows,  
 

  

The subscripts correspond to the voltage response at 

location X=Xp in the presence of a BAP at X = X0 and 

hotspot locations at X = Xi. Let 

 

 

 

and 

 

 

 

 

then Eqn (16) becomes 

 

 

 

Equation (19) is our resulting nonlinear Volterra 

integral equation for the membrane potential (Φ) 

which can be solved using a number of different 

methods. However, here we have applied regular 

perturbation theory leading to a perturbation 

expansion that yields a sequence of linear Volterra 

integral equations. 
 

5. A perturbative approach for the membrane 

    potential 
 

Let the depolarization be represented as a membrane 

potential perturbation from the passive BAP in the 

form of a perturbative expansion: 

 

 

 

where Φ (X, T) is the perturbed voltage from the zero-

order Φ0(X, T) approximation given by solving Eqn. 

(14).  On substituting our expansion Eqn (20) into Eqn 

(19) and equating coefficients of powers of system ϵ, 
a sequence of linear Volterra integral equations 

describing the nonlinear perturbations of the voltage 

from the passive cable voltage response Φo(X, T) is 

obtained via a Taylor expansion of Γ to yield up to   

O(ϵ 4) : 
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(15) 
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(19) 

 

(20) 
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where G is the Green’s function. 

 

6. Determining the sodium activation and 

inactivation in the current-clamp case.  
 

The dimensionless activation (μ) and inactivation (η) 

reflect the opening and closing of a small cluster of 

Na+ channels, respectively, whose dynamics follow 

reaction kinetics described by a first-order ordinary 

differential equation of the form (Hodgkin & Huxley, 

1952):  
 

 

 
 

or equivalently 

 

 

 

where  

 

 

 

and  

 

 
 

Note that in some cases ξ∞(Φ) may be explicitly 

given by a functional form like 

 

 

 

and the rate-constants (sec)−1 are Boltzmann-type 

functions of the form: 

 

where aα, bα, cα, aβ, bβ, cβ, bξ and cξ are constants. For 

example, based on experimental data obtained by 

Mainen et al. (1995) for neocortical dendrites, the 

parameters used to calculate the activation function 

were: aα = 0.182, bα = −35.0, cα = 9.0, aβ = −0.124, bβ 

= −35.0, cβ = −9.0 and for the inactivation function 

Eqn. (22) was used with Eqn. (23) where: aα = 0.024, 

bα = −50.0, cα = 5.0, aβ = −0.0091, bβ = −75.0, cβ = 

−5.0, bξ = −65 and cξ = 6.2. 

 

Calculating the first-order correction term Φ1(X, T) 

requires calculating the activation μ(Φ0i) and 

inactivation η(Φ0i) gating variables for each hotspot 

location of the Na+ channel, using the zero-order term 

Φ0(X, T), the solution of the linear diffusion equation 

given by Eqn (14). Here, we used the channel 

descriptions given in Mainen et al. (1995), where the 

gating variables are given by: 

 

 

 

 

 

 

 

 

where η∞(χ) = 1/(1 + e(χU
peak

+E
R

+b
ξ)

/c
ξ
), τη(χ) = 1/(αη(χ) 

+ βη(χ)) and Φ0i = Φ0(Xi,T). One must remember that 

the voltage term Φ(X,T) that would have appeared in 

the above equations has been replaced by the passive 

response Φ0(Xi,T). For higher order correction terms 

(n ≥ 2) of Φ, this involves derivative terms of the 

activation and inactivation functions with respect to 

the dimensionless voltage (Φ) evaluated at Φ = Φ0i. 

These terms result from applying the perturbative 

expansion to all voltage-dependent terms in our 

system of equations, including the activation and 

inactivation terms of the Na+ channels and equating 

terms in powers of ϵ. Here, we show the resulting 

expressions for activation variables described by Eqn. 

(21) one arrives at the following hierarchical systems 

of ordinary differential equations. 
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For activation/inactivation variables given by Eqn. 

(22) the hierarchy of equations resulting from 

perturbation is left as an exercise for the reader. Other 

potential interest methods are applying some 

transformation techniques similar to those used to 

solve Volterra integral equations (see Evans & Shenk, 

1970; Mascagni, 1989). 
 

 

7. Results 
 

 

The first question of our investigation was to see how 

the nonlinear sodium current sources modify the 

passive response of our cable to the spike voltage 

clamp. Fig 2 illustrates the passive BAP generated 

using Eqn (18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 illustrates how even a small number of Na+ 

hotspots can amplify the voltage response along the 

cable. The resulting amplification of the BAPs was 

generated from expression Eqn (20) at several 

locations along the cable of (dimensional) length L = 

1000 μm and diameter d = 4μm, and uniform spatial 

distribution of hotspots from X = 0 to X = L located at 

length intervals of jL/N where j =1, 2,... .N. 

 

In Fig 4, an identical number of hotspots but a non-

identical number of Na+ channels per hotspot is 

considered. Specifically, we considered both a 

linearly increasing and decreasing number of Na+ of 

sodium channels per hotspot as a function of distance. 

Fig 4 illustrates the voltage response at the same three 

locations used before. The results indicate that the         

.  

 

 
(25) 

 
(26) 

 

Figure 2: The passive response for our somatically 

injected voltage clamp for generating the backpropagating 

action potential recorded at locations x = 50μm, x = 

500μm, and x = 1000μm along our cable. 

 

 

  Volume 2 Issue 2, 2023                                359 



        m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strength of the inward current is an important indicator 

of the amplification of the signal because it allows the 

Na+ channels to exert an effect at various membrane 

potential levels in accordance with the INa−V 

dynamics. Hence, for large voltage excursions, the 

solution will also be affected by the strength of the 

inward current. 
 

 

Fig 4 also presents an initially counterintuitive 

nonlinear effect on the resulting membrane potential, 

namely, as the number of Na+ ion channels increase as 

a function of distance, one would expect that the 

maximum voltage of the BAP would also increase 

along the cable, and likewise with decreasing numbers 

of s Na+ ion channels per hotspot as a function of 

distance, would result in less amplification of the 

membrane voltage. Fig 4 does not indicate this. 

Instead, for the linear decreasing case, one can see 

greater amplification of the BAP at larger distances 

from the soma compared to the linearly increasing 

case. Why is this happening? The reason is the details 

of the Na+ channel densities used in these simulations.  
 

For the linearly increasing case, the number of Na+ 

channels start associated with our default ion channel 

density of 100 pS/μm2 and increases 10-fold when x = 

1000 μm, while for the decreasing case, this same 

distribution is flipped (along the cable) so that at Na+ 

channel density is 10 times higher at x = 0 μm and 

decreases linearly to default value at x = 1000 μm 

(1/10th the value at x = 0 μm). Here, it becomes 

apparent that, for the linearly decreasing distribution, 

the aggregate degree of boosting by the hotspots of the 

BAP along the cable is greater than the linearly 

increasing case since, for the linearly decreasing case, 

the channel density per hotspot is larger over the first 

half of the cable (from x = 0 to x = 500 μm), thereby 

resulting in larger amplification and better support of 

the BAP along the cable’s extent. Moreover, the above 

results indicate that several factors influence how Na+ 

channels affect the BAP, including channel density 

and spatial distribution, the number of hotspots, and 

the distance between hotspots. 
 

We wanted to observe how the BAP signal is 

amplified due to an additional number of hotspots or 

variations in the number of channels per unit length. 

We assume there are θ∗(Xi) Na+ channels that occupy 

each hotspot, where N∗(Xi) = θ(Xi)/πd denotes the 

number of channels per unit length. Fig 5 illustrates 

how increasing the channel density per unit length (by 

increasing channel density per unit area) alters and 

amplifies the BAP along the cable. We observe 

moderate amplification of the BAP signal along the 

cable in Fig 5A but great amplification in Fig 5B. 

 

 
Figure 3: The voltage response for our somatically generated 

back propagating action potential in the presence of a uniform 

distribution of Na+ channels and recorded at the same 

locations along our cable x = 50μm, x = 500μm, and x = 

1000μm as those used for the passive response. Here, upon 

comparing with Fig 2, one can see that for a uniform 

distribution of 10 Na+ channel hotspots can amplify the 

voltage response when compared with the passive response. 

 
    

Figure 4: The voltage response at x = 50μm, x = 500μm, 

and x = 1000μm for (A) a linearly increasing and (B) a 

linearly decreasing Na+ channel density as a function of 

distance from the soma. 
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The number of hotspots and the distance between 

hotspots or the inter-hotspot distance can also affect 

the amplitude and, to a lesser extent, the form of the 

BAP signal. We varied the number of hotspots by 

systematically increasing the number of hotspots from 

N = 20 to N = 80 (in steps of 20). We investigated the 

response by computing expression Eqn (20) for a 

cable of length L = 1000 μm and diameter d = 4μm, 

again assuming a uniform distribution of hotspots 

from X = 0 to X = L located at length intervals of jL/N. 

The results presented in Fig 6 illustrate that an 

increased number of hotspots, along with a decrease 

in the inter-hotspot distance, leads to an increase in the 

amplitude of the BAP as it propagates along the cable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The BAP recorded at locations x = 100μm, x = 

200μm, x = 300μm, x = 500μm, and x = 750μm for a Na+ 

channel density of (A) GNa =300 pS/μm2 and for (B) GNa =750 

pS/μm2 
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Figure 6: The BAP recorded at locations x = 100μm, x = 

200μm, x = 300μm, x = 500μm, and x = 750μm for increasing 

number of hotspots Na+ channel density of (A) N = 20 (B) N = 

40 (C) N = 60 and (D) N = 80 hotspots 

 



 

The ionic cable equation in its full and unexpanded 

form is a nonlinear system of equations, and thus it can 

be expected to have several behaviors ranging from 

complex, chaotic attractors and resonances to simpler 

stationary states, periodic orbits, solitary waves and 

limit cycles; complex behavior in particular, can be 

expected when periodic forcing terms are present. In 

order to study the nonlinear behavior analytically, we 

have resorted to a regular perturbative expansion 

concerning the voltage to derive a set of expressions 

that describe how the passive voltage is altered 

according to these perturbative terms. Here, the 

resulting terms of the expansion can be viewed as a 

quasilinear approach toward understanding how the 

passive response is transformed. However, one must 

know potential convergence issues caused by 

insufficient terms.  

 

It would be interesting to see whether one can find an 

optimum number and distribution of Na+ channels that 

preserves the maximum amplitude of the BAP while 

it propagates along the extent of the cable. The 

hotspots would essentially need to support a form of 

quasi-saltatory propagation and, in principle, would 

require each hotspot and its constituent Na+ channels 

to operate with optimal conductance as allowed by the 

INa−V dynamics to achieve maximum propagation. By 

increasing the number of Na+ channels per hotspot (θ∗) 

via the conductance gNa, a relatively small number of 

hotspots would be required to produce sufficient 

amplification of the BAP signal and provide one with 

the means to yield an optimal number of Na+ channels. 

On the other hand, by decreasing the conductance gNa, 

more hotspots will be required to preserve the 

amplitude (and, to a lesser extent, the shape) of the 

BAP during transit along the spatial extent of the cable 

under investigation. When increasing the number of 

hotspots, one needs to remember that too many 

hotspots will lead to large deviations in the profile of 

the calculated voltage. Here, one needs to optimize 

both the strength of the channels that make up the 

hotspot, the distribution of hotspots, as well as the 

inter-hotspot interval (the distance between hotspots) 

in a way that may likely require one to adopt a 

conservation rule where doubling the number of 

hotspots will require each hotspot to generate half the 

current. This assumption is a natural consequence of 

conserving generated current, but the actual method is 

likely not as simple since each hotspot should boost 

the passive response just enough to generate a realistic 

BAP. 

 

 

8. Discussion 

 

An a priori assumption of the theory is that Na+ 

channels along the dendritic axis are far less abundant 

than those found along the somatoaxonal axis and in 

discrete patches resembling hotspots. This assumption 

is based on the nature of ion channels being pores 

embedded in the neuron’s membrane (Hille, 2001), 

suggesting that ion channels are distributed discretely. 

Still, this assumption can be made as general as we 

like by reducing the distance between hotspots to 

approximate a continuous layer of ionic channels. 

Significantly, further studies have provided additional 

evidence that ion channels are discretely distributed in 

neuronal dendrites, and an increasing body of 

experimental literature that supports the ion channels 

tend to form clusters occupying finite domains or 

hotspots along the dendrite’s plasma membrane 

(Ballou et al., 2006; Lai & Jan, 2006; McKeown et al., 

2008; Misonou & Trimmer, 2004; Sheng et al., 1992; 

Trimmer & Rhodes, 2004) however, the underlying 

mechanisms for the locations and discrete nature of 

such ion channel distributions needs further 

experimental investigation.  

 

The passive membrane time-constant τm = RmCm is 

calculated from values of the membrane resistivity 

(Rm) as the membrane capacitance (Cm) is a fixed 

constant of 1μF/cm2. Rm is an intrinsic property of the 

receptor membrane. Since synaptic receptors are 

located peripherally, it suggests that Rm is low in distal 

dendrites. A favorable fit to a compartmental model 

has been a sigmoidally decreasing function for 

neocortical pyramidal dendrites to a final value of Rm 

= 5357 Ωcm2 (Stuart & Spruston, 1998). However, 

notwithstanding the problems inherent in such neural 

modeling protocols for active properties of the 

dendritic membrane, in vitro, preparations are 

unlikely to be appropriate for values encountered in 

vivo. The significance of even lower Rm ≈ 500 Ωcm2 

used by Chiu et al. (1979) for myelinated axons in 

comparison to Rm ≈ 3300 Ωcm2 or a leakage 

conductance of 0.3 mS/cm2 used by Hodgkin & 

Huxley (1952) for an unmyelinated axon membrane is 

in line with the value used by early investigators of the 

passive dendritic properties of CNS neurons (e.g., Rall 

(1959)). This would be advantageous to a highly 

modulatory environment of the dendritic neuropil in 

vivo due to a highly rich receptor-covered membrane 

arising both synaptically and extrasynaptically (Aiello 

& Bach-y Rita, 1997).  
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FitzHugh (1960) first studied reduced systems of 

equations when one or more gating variables were 

held constant. A reduced system, in which only the K+ 

activation was held constant at the resting value, was 

shown to result in the action potential not returning to 

rest but maintaining an infinite plateau potential. 

FitzHugh (1960) remarked that such an approach 

could not yield sufficient information to explain how 

trains of action potentials can be modeled with H-H 

equations. In other words, it fails to qualitatively 

reproduce the pulse recovery necessary for repeated 

firing or trains of BAPs. Holden and colleagues, in a 

series of papers (see Holden,1980, 1981; Holden & 

Winlow,1983), have shown that specific changes in 

K+ channel density can lead to autorhythmicity: 

excitable membranes that lack K+ channels are 

stabilized by a high leakage conductance (or low Rm). 

 

The H-H equations exhibit a wide variety of 

dynamical activity, ranging from oscillations (Taylor 

et al., 1995) and periodic orbits (Troy, 1977) to 

complex chaotic behavior (Maršalek & Santamarıa, 

1998). Changes to the K+ channel density in the H-H 

membrane can lead to small amplitude oscillations 

investigated mathematically by Taylor et al. (1995) 

and large amplitude periodic solutions that reflect a 

repetitive discharge of action potentials investigated 

mathematically by Troy (1977). As a result, a Na+ 

pump and/or Na+−Ca2+ exchanger current is included 

in the model. It should be mentioned that all calcium 

(Ca2+) currents are not involved in generating 

repetitive action potentials because action potentials 

can be generated in the presence of calcium 

antagonists, such as Co2+ or Cd2+ when added to the 

bath solution, in the experiment. So we avoided the 

complication of a Na+ − Ca2+ exchanger in the model, 

although modeling of induced Ca2+ influx as a result 

of BAPs has been done with compartmental modeling 

(Maršalek & Santamarıa, 1998). Nevertheless, 

experimental results show that single BAP causes an 

influx of Ca2+ (e.g., Jaffe et al.,1992; Markram et al., 

1995; Xiong & Chen, 2002).  

 

The H-H equations exhibit repetitive firing, typically 

when stimulated by suprathreshold constant input 

leading to infinite trains of APs and the case of 

nonlinear cables, infinite trains of BAPs, yet 

experiments show finite trains of BAPs. The slow 

inactivation process would account for this 

discrepancy (e.g., Fleidervish et al., 1996). 

Decremental conduction of the BAP could also result 

from a large amount of K+ ions in the external 

medium. Despite this, the Hoffman et al. (1997) model 

of peak reduction of BAPs due to a high concentration 

of K+ channels in distal dendrites are one mechanism 

for the decremental conduction of the BAP. However, 

there are concerns about the validity of this since 

experiments indicating that K+ channels are discretely 

distributed in dendrites (Ballou et al., 2006; McKeown 

et al., 2008; Misonou &Trimmer, 2004; Trimmer & 

Rhodes, 2004) and because of the cost of maintaining 

a high and continuous density distribution of K+ 

channels is high, requiring metabolic energy to 

transport from the soma to such terminal dendrites an 

enzyme for catasynthesis of the protein during 

endocytosis. Despite this, the inclusion of calcium 

(diffusion) dynamics along with a Na+ pump and/or  

Na+−Ca2+ exchanger, A-type K+
 currents (Hoffman et 

al., 1997; Migliore et al., 1999), and nonspecific 

cation currents (Magee, 1998; Migliore, 2003) 

modulates the spatiotemporal spread of BAPs during 

synaptic integration. 
 

 

9.   Conclusion 
 

In the last decade, we have seen a rapid rise in 

computational models but limited recourse to the 

further development of nonlinear cable theory 

(Iannella et al., 2014; Poznanski et al., 2017a, b). 

Apart from a new cable theory based on the path 

integral developed because compartmental models are 

considered to be inappropriate since they do not 

provide a continuous description of the membrane 

potential as a function of space (position) and time but 

rather a discrete approximation to it (see Cao & 

Abbott, 1993).  

 

Few advances have been made beyond what was 

known four decades ago, as summarized in the 

monograph by (Jack et al., 1983, (on p. 305)): 

“Although subthreshold oscillatory activity may be 

treated semi-analytically using the equations for the 

time dependence of the ionic current given by 

Hodgkin-Huxley (see Sabah & Leibovic (1969)), it is 

more difficult to analyze oscillator activity in response 

to larger currents near or beyond the threshold for 

initiating action potentials. If the Hodgkin-Huxley and 

cable equations are used, it is necessary to resort 

almost entirely to numerical computations’.” 

Nevertheless, we have advanced analytical models of 

active propagation in dendrites well beyond what was 

known two decades ago.  
 

Analytical solutions of the H-H equations for a 

suprathreshold input representation of a BAP at a 

point close to the soma were found for a dendrite 

model containing transient Na+ channels spatially 

distributed at discrete locations along the dendritic 
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axis. This investigation highlights that analytical 

approaches can be developed to tackle difficult 

nonlinear problems.  
 

Conflict of Interest  
 

The authors declare no conflict of interest. 
 

Appendix 
 

The following integral for Φ0(X,T) needs to be 

evaluated, representing the solution to the linear cable 

equation: 

 

 

 

 

 

 

 

 

 

 

where = 15, H(T) is the Heaviside step function, and 

G(X,0; T) is the Green’s function given by the solution 

to the following initial value problem: 

 

 

 

  

 

 

and corresponds to the response at time T at position 

X to a unit impulse at X = 0 and T = 0. For a finite 

cable with a killed-end boundary condition G(0, 0; T) 

= 0 at X = 0 and a sealed-end condition ∂G(L, 0, T) 

/∂X = 0 at X = L, several representations for the 

Green’s function converges for small and large T 

(Tuckwell, 1988). Here we have used the following 

expression for G(X,0;T) that converges for small T 

values: 

 

 

 

 

 

 

 

and the one for G(X,Xi;T) for is calculated from 

 

 

 

 

 

 

with the following killed-end boundary condition 

G(0,Xi; T) = 0 at X = 0 and sealed-end  condition  ∂G 

(L,Xi, T) /∂X = 0 at X = L (where L is the electrotonic 

length) is expressed as:  
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respectively. 
 

The integral expression for Φ0(X, T) can be solved 

analytically but requires the following integrals to be 

used, 
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Now keeping the terms for positive integers k = 0 and 

p = 0, 1 and utilizing the following identities 

 

   
 

leads to the following expression for Φ0(X, T) used in 

all the simulations: 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, for the case when a spike train is 

considered, all that is required is to replace all 

occurrences of T on the LHS of the expression for 

Φ0(X, T) with T − kω then the expression for Φ0(X, T) 

is given by, 
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where Erfc(z) is the complementary error function. 
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