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     Abstract 
 

Many central neurons, particularly certain brainstem 

aminergic neurons, exhibit spontaneous and fairly regular 

spiking with frequencies of order a few Hz. Many ion 

channel types contribute to such spiking, so accurate 

modeling of spike generation requires solving very large 

systems of differential equations, ordinary in the first 

instance. Since the analysis of spiking behavior when many 

synaptic inputs are active adds further to the number of 

components, it is useful to have simplified mathematical 

models of spiking in such neurons so that, for example, 

inputs and output spike features trains can be incorporated, 

including stochastic effects. In this article, we consider a 

simple two-component model whose solutions can mimic 

features of spiking in serotonergic neurons of the dorsal 

raphe nucleus and noradrenergic neurons of the locus 

coeruleus. The model is of the Fitzhugh-Nagumo type, and 

solutions are computed with two representative sets of 

parameters. Frequency versus input currents reveals 

Hodgkin type 2 behavior, which is supported by bifurcation 

and phase plane analysis. The article concludes with a brief 

review of the previous modeling of these types of neurons 

and their relevance to serotonergic and noradrenergic 

involvement studies in certain cognitive processes and 

pathologies. 

 
      

      1. Introduction 

Neurons that exhibit (approximately) periodic spiking 

in the presumed absence of synaptic input are called 

autonomous pacemakers and include neurons found in 

the subthalamic nucleus, nucleus basalis, globus 

pallidus, raphe nuclei, cerebellum, locus coeruleus, 

ventral tegmental area, and substantia nigra [1]. 

 

 

 

 

 

 

 

To function as pacemakers, some cells may require 

small amounts of depolarizing inputs, natural or 

laboratory. Thus, for example, Pan et al. [2] found that 

all 42 rat LC neurons fired spontaneously. In contrast, 

Williams et al. [3] and Ishimatsu et al. [4] reported that 

most cells did not require excitatory input to fire 

regularly. These latter three sets of results were 

obtained in vitro. Sanchez-Padilla et al. [5] reported 

that spike rate in mouse LC neurons was not affected 

by blockers of glutamatergic or GABAergic synaptic 

input, supporting the idea that these cells were 

autonomous pacemakers. 

 

The neurons with which we are mainly concerned are 

serotonergic neurons of the dorsal raphe nucleus and 

noradrenergic neurons of the locus coeruleus. The 

electrophysiological properties of these cells have 

been much investigated over the last several; decades 

[6,7,8,9]. Their roles in stress-related disorders such 

as MDD and PTSD by means of reciprocal 

interactions with, inter alia, the HPA axis (especially 

through the PVN), hippocampus and prefrontal cortex 

are well documented [10,11,12,13]. For example, 

CRH neurons of the PVN project directly to SE 

neurons of the DRN [14] and NA neurons of the LC 

[15]. Stress, via upregulation of the cAMP pathway, 

increases the excitability of LC neurons [16]. In 

addition, these brainstem neurons are endowed with 

glucocorticoid receptors activated by high levels of 

corticosterone (cortisol) [17]. 

 

 

 

 

 

 

 

 

  

N
eu

ro
sc

ie
n

ce
 

Reduced modeling of pacemaker spiking in dorsal raphe nucleus  

and locus coeruleus neurons 

J. Multiscale Neurosci. vol.1 (2), 83-95 

(©2022 The Authors) Published by Neural Press 

 

 

  

Jo
u

rn
al

  
 o

f 
  

M
u

lt
is

ca
le

 N
eu

ro
sc

ie
n
ce

 

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 

Submitted: 15 March 2022, Accepted: 15 June 2022, Published: 2 October 2022 

83 

Ying Zhou1, Henry C. Tuckwell2,* and Nicholas J. Penington3, 4 
 

1Department of Mathematics, Lafayette College, 1 Pardee Drive, Easton, PA 18042, USA                    

2School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia 
3Department of Physiology and Pharmacology 
4Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science 

 State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY    

 

11203-2098, USA 

Abstract 
 

 

 

Many central neurons, particularly certain brainstem aminergic 

neurons, exhibit spontaneous and fairly regular spiking with 

frequencies of order a few Hz. Many ion channel types 

contribute to such spiking, so accurate modeling of spike 

generation requires solving very large systems of differential 

equations, ordinary in the first instance. Since the analysis of 

spiking behavior when many synaptic inputs are active adds 

further to the number of components, it is useful to have 

simplified mathematical models of spiking in such neurons so 

that, for example, inputs and output spike features trains can be 

incorporated, including stochastic effects. In this article, we 

consider a simple two-component model whose solutions can 

mimic features of spiking in serotonergic neurons of the dorsal 

raphe nucleus and noradrenergic neurons of the locus 

coeruleus. The model is of the Fitzhugh-Nagumo type, and 

solutions are computed with two representative sets of 

parameters. Frequency versus input currents reveals Hodgkin 

type 2 behavior, which is supported by bifurcation and phase 

plane analysis. The article concludes with a brief review of the 

previous modeling of these types of neurons and their 

relevance to serotonergic and noradrenergic involvement 

studies in certain cognitive processes and pathologies. 

 

      Keywords: Dorsal raphe nucleus, serotonergic neurons, locus 

      coeruleus, noradrenergic neurons, computational model, pacemaker 
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In most common experimentally employed animals 

except the cat, the locus coeruleus is almost completely 

homogeneous, consisting of noradrenergic neurons, 

which in rats number about 1500 [18,19]. The number of 

neurons in the rat DRN is between 12000 and 15000 [20, 

21], of which up to 50% are principal serotonergic cells 

[22]. There are about 1000 dopaminergic cells [23] and 

GABAergic cells, whose density varies throughout the 

divisions of the nucleus, as well as several other types of 

neurons. 

 

The SE neurons of the DRN and the NA neurons of the 

LC often exhibit a slow regular firing pattern with 

frequencies of order 0.5 to 2 Hz in slice and sometimes 

higher in vivo. The origins of pacemaker firing differ 

amongst various neuronal types. Thus, brainstem 

dopaminergic neurons may fire regularly without 

excitatory synaptic input [24,.25]. Mathematical 

modeling showed that the rhythmic activity is driven by 

subthreshold oscillations arising from an interplay 

between an L-type calcium current and a calcium-

activated potassium current [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mechanisms of pacemaker firing in LC neurons 

are not fully understood, although it can be sustained 

by a TTX-insensitive persistent sodium current [27, 

28]. For serotonergic neurons of the DRN, there 

have been no reports of a persistent sodium current 

and L-type calcium currents are relatively small or 

absent [29], so the main candidate for depolarization 

underlying pacemaking is a combination of T-type 

calcium current and the classical fast TTX-sensitive 

sodium current which dominates the pre-spike 

interval [30]. In some cells, the hyperpolarization-

activated cation current may also play a role. 

 

In Figure 1 are shown portions of spike trains in 

mouse and rat LC and rat DRN and CRN. Notably, 

the frequency of firing of LC and DRN principal 

neurons depends on the sleep stage. Thus, for 

example, in rats, waking, slow-wave sleep and REM 

sleep are accompanied by LC firing rates of about 

2.2 Hz, 0.7 Hz and 0.02 Hz, respectively [31, 32, 33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Some representative spikes from rat and mouse raphe nuclei and LC neurons. A. Part of a train of spikes in a 

rat LC neuron in slice. Markers 20 mV and 200 ms [43]. B. Detail of the course of the average membrane potential in a 

mouse LC neuron during an interspike interval [44]. C. Action potentials in infant (7 to 12 days) and adult (8 to 12 weeks) 

mice [45]. D. Whole-cell current-clamp recording of spikes in a mouse (21 to 32 days) LC neuron [5]. E. A few spikes 

from rat dorsal raphe nucleus (slice) [46]. F. Portion of a spike train from rat caudal raphe nucleus [47]. G. Train of 

spontaneous spikes at a mean frequency of 0.85 Hz for a rat LC neuron in vitro [48]. 
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Figure 2 shows spikes computed with the detailed 

model of rat DRN SE neurons [30] for four different 

parameter sets. This model's key variables include 

membrane potential and intracellular calcium ion 

concentration, which satisfy ordinary differential 

equations. However, 11 distinct membrane currents 

drive the system, resulting in a dynamical system with 

18 components and over 120 parameters. 

 

To study network properties and quantities such as ISI 

distributions with various sources of random synaptic 

input, it is helpful to have a simpler system of 

differential equations that might yield insight into the 

properties of the detailed model whose execution with 

random inputs over hundreds of trials would be overly 

time-consuming. It is also pointed out that LC and DRN 

principal neurons are responsive to activation of about 

20 different receptor types, as exemplified by those on 

DRN SE neurons - see Section 5.2. Including many such 

afferents makes computational tasks even more 

cumbersome with an 18-component neuron model                  

[34, 35]. 
 

Simplified models of spike generation would also be 

useful in modeling the dynamics of serotonin release 

and uptake [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approximating neuronal dynamics with such 

models, including the well-known leaky integrate 

and fire model and linear cable models, has been 

proven useful in other contexts by several authors, 

some of whom reduced the number of component 

currents (for example [37,38,39]) whereas others 

have simplified the geometry of the dendritic tree 

[40,41,42]. 

 

2. Description of a reduced two-component 

model 

 

A first goal was to construct a two-component 

differential equation model whose solutions for the 

membrane potential broadly mimicked those for the 

multi-dimensional model developed in [30], which 

had given satisfactory agreement with experimental 

voltage trajectories (see references in [30]). 

 

To this end, the following pair of equations with 

suitable choice of parameters had solutions with the 

desired properties. Here V, in mV, V is the 

depolarization of membrane potential from the 

resting value, and R is a recovery variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Examples of computed spikes in a model for serotonergic neurons of the rat dorsal raphe nucleus from the 

model of Tuckwell and Penington [30]. Illustrated is the prolonged after hyperpolarization after a spike. The 

subsequent climb to the threshold is plateau-like, sometimes being almost horizontal. Membrane potentials in mV are 

plotted against time in ms. 
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In keeping with the properties of the variables in the 

Fitzhugh-Nagumo equations (see [49] Section 8.8), R 

will be (arbitrarily) ascribed units of mV/ms. Then we 

have 

 

 

which system is usually to be solved with the initial 

conditions V(0) = V0, R(0) = R0. The initial value of V 

is usually set at the resting membrane potential so that 

V0 = VR, whose average value for DRN SE neurons is    

-64.4 mV [50]. 

 

To study spiking, it will be assumed that the parameters 

α, λ, ϵ, k and ka are positive. The zeros of the cubic    

 

 

 

Are  chosen  such  that  V1 < V2 < V3, with V1 < 0 and         

V2 < 0. 

 

3. Examples of results for the two-component 

model 

 

In this section, we give examples of computed solutions 

for the above two-component system and consider some 

of the properties of the solutions. 

 

Examples with two sets of parameters 

 

There are ten parameters for the system of equations (1) 

and (2). Here we describe solutions for two sets of 

parameters, whose values are listed in Table 1. The 

solutions for both sets consist of periodic solutions in V 

and R, where the first component mimics trains of action 

potentials. 

 

For parameter set 1, the (numerical) solutions are shown 

in Figure 3A, and some of the details of the solutions, 

such as maximum and minimum values of V, mean ISI, 

and mean duration, are measured at V = −40 mV. The 

maximum value of R is given in the second column of 

Table 2. These results were obtained using an Euler 

scheme with ∆t = 0.02 ms. 

 

The voltage trajectories resemble some of the 

experimental ones in Figure 1, particularly for rat and   

.. 

 

 

 

 

 

 

mouse LC neurons (A and C) and, to a lesser extent, 

the rat DRN neurons (E). The duration of action 

potential (measured at -40 mV) is only 0.55 ms, 

which is too short for these brainstem neurons. 

Furthermore, the AHP declines to a very low value 

of about -109 mV, which is 49 mV below the 

assumed resting level. To make the minimum 

considerably higher in accordance with most 

experimental values, it is noted that the minimum of 

V occurs when dV/dt = 0 or when 

 

 

where R∗ is the value of R when the minimum of V 

occurs. The graphical situation is shown in Figure 4. 

By judicious choice of values of the parameters, it 

was possible to obtain periodic solutions with 

minima of V at an appropriate value of about -83 mV. 

This resulted in the parameter set 2, whose solution 

properties are displayed in Figure 3B and column 3 

of Table 2. These results were also obtained using 

an Euler scheme with step 0.02. The corresponding 

results with a smaller step of ∆t = 0.005 ms are given 

in column 4. A much smaller value of ∆t should lead 

to more accurate solutions. Still, considering that the 

computing time was about 30 times longer and the 

change in solution properties such as ISI and 

duration was less than 1%, it is satisfactory here to 

use the larger time step. A comparison was also 

made with results obtained using a 4th order Runge-

Kutta scheme, which was an order of magnitude 

slower than the Euler method and gave an almost 

identical ISI of 869.04 ms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Two sets of parameters for the system (1), (2) 

 

Parameter Set 1 Set 2 Parameter Set 1 Set 2 

α 400 400 V1 -77.4 -60 

ϵ 30 5 V2 -61 -50 

ka 2 2 V3 20 20 

Va -10 -10 IApp 15 15 

λ 60 20 k 0.00042 0.0000525 

 
Table 2: Some details for the spike trains for sets 1 and 2 

parameters with IApp = 15. 

 

 

Property Set 1 Set 2 Set 2 

∆t 0.002 ms 0.002 ms 0.005 ms 

Mean ISI (ms) 501.1 870.8 869.5 

Mean Duration (ms) 0.55 2.81 2.79 

Max (V) (mV) +8.9 +18.7 +18.5 

Min(V) (mV) -109.4 mV -83.5 -83.4 

Max(R) 8.7 10.96 10.90 
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𝑑𝑉

𝑑𝑡
=
1


(𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉3 − 𝑉) − 𝜆𝑅 + 𝐼𝐴𝑝𝑝 

 

              
𝑑𝑅

𝑑𝑡
=

𝜖

1+exp⁡⁡⁡
−(𝑉−𝑉𝑎)

𝑘𝑎

⁡+ 𝑘𝑅𝑉, 

      𝑓(𝑉) =
1

𝑎
(𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉3 − 𝑉) 

 

f(V ) = R∗ − IApp 

 

(1) 

(2) 

(3) 

(4) 
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𝜖 𝑑𝑅

𝑑𝑡
= +𝑘𝑅𝑉, 

a     

a 

 (VV a) 

         𝑘𝑎 
 

a 

 



3.1 Frequency versus current curves 

 

The above results for sets 1 and 2 parameters were 

obtained with IApp = 15. It is interesting to compute the 

frequency of action potentials for various applied 

currents, as this corresponds to certain experimental 

data. The plot of output frequency versus applied 

current is called an f/I curve which differs in its 

characteristics from neuron to neuron. Often there is a 

threshold current for action potentials, which in the 

classical literature was called the rheobase current. 

 

Hodgkin [51] found that there were two broad types of 

f/I curves for squid axon preparations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type 1 consisted of an f/I curve that smoothly rose 

from zero at a particular input current value, whereas 

type 2 curves discontinuously rose at a certain 

threshold current. Tateno et al. [52] found that 

regular spiking and fast-spiking neurons in the rat 

somatosensory cortex exhibit Type 1 and Type 2 

firing behaviors, respectively. Mathematical 

explanations for the two types of thresholds are 

found, like the bifurcation, which accompanies the 

transition from a rest state to a periodic firing mode, 

as discussed in Section 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: A. Plots of numerical solutions for the two-component model with the first parameter set of Table 1. V 

(t) is plotted against t with three different timescales to show the spike train and spike details. B. Corresponding 

results for set 2 parameters. 

 
Figure 4: Illustrating the graphical solution for the minimum of V. 
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Graphs of the frequency of repetitive spiking versus 

depolarizing input current are shown in Figure 5 for 

parameter sets 1 and 2. In both cases, the frequency 

jumps from zero to a positive value at a particular value 

of the applied current IApp. For parameter set 1, the 

threshold current for firing is very close to 15, at which 

the firing frequency is about 2 Hz. For parameter set 2, 

the threshold current is about IApp = 4.7, where the firing 

frequency jumps from zero to about 0.29 Hz. Thus the 

responses of the model with either parameter set are 

those of type 2 neurons [51]. The nature of the f/I curves 

for the approximate model is thus similar to that for both 

the experimental results for DRN SE neurons and the 

multi-component model [30]. 

 

3.1.1 Autonomous pacemaker activity 

 

The above results on frequency versus current indicate 

that to make the model neuron fire with parameter sets 

1 and 2, current IApp > 0 must be applied. If R(0) = 0, this 

is necessary because the cubic f(V) defined in Eq. (3) is 

negative for a range of values of V, and in particular, the 

range containing V(0). If V1 = V2 = −60, the cubic is 

tangential to the V -axis and f(V) is never negative.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then firing, albeit very slow, was demonstrated to 

occur for values of IApp extremely close to zero, 

implying autonomous firing in the limit. It is 

possible by choosing a cubic f(V) with only one real 

root, for example, at V3 = 20 (as in parameter sets 1 

and 2), so that f(V) > 0 for all V < V3, in which case 

autonomous firing could occur; that is with IApp = 0. 

The resulting source function would then be similar 

to the steady-state curve in Figure 18 of the 

multidimensional model [30], where in some cases, 

it was found that pacemaker firing occurred in some 

cases for IApp = 0 or even IApp < 0, whereas in others, 

a small depolarizing drive was necessary. 

 

4. Effects of changing parameters and phase 

plane analysis 
 

A detailed compilation of the effects on the spike 

train properties as each of the ten parameters is 

varied is not explored here. Instead, Table 3 lists the 

effects of increasing or decreasing each of the ten 

parameter values relative to their values in set 2 on 

the mean ISI, mean duration of spike, maximum and 

minimum of voltage during spike, and maximum 

value of the recovery variable during spiking. 

 

 

 

 

 

 

 

 

 
 

Figure 5: Frequency versus input depolarizing current for parameter sets 1 (above) and 2 (below). 
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We focus attention on the ISI and spike duration. For 

the ISI, significantly altering each of the parameters ϵ, 

λ, Va and ka had little or no effect. On the other hand, the 

ISI was increased by decreasing any of α, IApp, V1 and k 

or by increasing either V2 or V3. The duration of spikes 

was little affected by significant changes in any of k, ka, 

Iapp, V1, V2 or by decreases in Va. However, increases in 

Va led to a substantial increase in duration. Significant 

increases in duration resulted from decreases in any of 

α, ϵ or λ, or increases in V3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To see the bifurcations involved when the injected 

current IApp is changed, we analyze the phase plane of 

the model. The two nullclines of the two-component 

model are 
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(c) 

𝑅 =
1

𝜆𝑎
(𝑉 − 𝑉1)(𝑉 − 𝑉2)(𝑉3 − 𝑉) +

𝐼𝐴𝑝𝑝

𝜆
 

 

for dV/dt = 0, and 

 
𝑅 = −

𝜖

1 + exp⁡⁡
−(𝑉 − 𝑉𝑎)

𝑘𝑎

⁡⁡⁡ .
1

𝜅𝑉
 

 

(5) 

(6) 

for dR/dt = 0. 
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  (V  Va) 
 

 

 

ka 

.         , 
kV 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7: Phase portraits of the two-component model for different parameters. In panel (a), IApp = 0, ϵ = 8, while 

the other parameters are the same as set 2 in Table 1, and the resting state is a stable node. As IApp increases, the 

system goes through a saddle-node bifurcation. In panel (b), IApp is increased to 15, the system has only one 

equilibrium remaining, and there is a limit cycle. In panel (c), V1 = −30, V2 = −20, V3 = 50, and other parameters 

coincide with those in panel (b). With this parameter set, the system has only one equilibrium, which is a stable 

node. As IApp is increased, the system goes through an Andronov-Hopf bifurcation, and the stable node loses 

stability to give birth to a limit cycle, such as the one in panel (d). In panel (d), IApp = 40, while the other 

parameters are the same as in panel (c). 

 
 

Table 3: Properties of the spike trains for different sets of parameters relative to set 2 

 

Parameters Mean ISI Mean Duration Max(V) Min(V) Max(R) 

Set 2 869.04 2.74 18.37 -83.40 10.88 

α = 2000 462.4 3.0822 0.26 -91.92 4.53 

α = 200 1231.84 4.0267 19.69 -81.73 18.32 

ϵ = 2 849.32 5.47 19.84 -82.15 9.87 

ϵ = 8 884.04 2.005 17.01 -84.32 11.66 

λ = 10 853.02 4.58 19.58 -82.40 20.14 

λ = 30 881.76 2.085 17.23 -84.18 7.70 

Iapp = 10 1069 2.74 17.95 -83.40 10.63 

Iapp = 20 755.52 2.74 18.78 -83.40 11.13 

V1= -65 1127.82 2.8667 18.59 -86.82 11.51 

V1= -55 794.7 2.66 18.10 -80.15 10.27 

V2= -55 771.76 2.812 18.62 -86.21 11.65 

V2= -45 1128.26 2.7067 18.05 -80.78 10.14 

V3= -15 815.24 2.52 13.10 -81.73 9.12 

V3 = 25 919.14 3.025 23.63 -84.99 12.80 

Va = -20 883.14 2.63 17.78 -84.23 11.59 

Va = 0 840.84 3.14 18.86 -81.82 9.62 

ka = 1 869.3 2.73 18.37 -83.42 10.90 

ka = 3 868.76 2.75 18.36 -83.38 10.87 

k = 0.0000325 1396.54 2.74 18.37 -83.42 10.89 

k = 0.0000725 632.26 2.74 18.37 -83.39 10.88 

 

(d) 
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The system may have one equilibrium or three 

equilibria depending on the parameters. The voltage 

variable, V, for each equilibrium, satisfies the equation 
 

 

 

+
𝐼A𝑝𝑝

𝜆
= −⁡

𝜖

1 + exp⁡
−(𝑉 − 𝑉𝑎)

𝑘𝑎

 

Solving equation (7) for the applied current IApp, we find 

that the system goes through a saddle-node bifurcation 

when IApp increases. In Figure 6(a), the voltage V in the 

equilibrium equation (7) is plotted with respect to the 

applied current IApp. As we can see from this figure, 

when IApp = 0, ϵ = 8, and the other parameters are the 

same with parameter set 2, the system has three 

equilibria, visualized in Figure 7(a) by the intersection 

of the cubic V -nullcline and the R-nullcline. A nearby 

saddle accompanies a stable node in the lower voltage 

range. The stable node corresponds to the resting state, 

and the saddle sets a threshold for the initial voltage 

required for a (non-repetitive) spike. As the current IApp 

increases, the distance between the stable node and the 

saddle decreases. Eventually, the saddle and the node 

collide and annihilate each other through a saddle-node 

bifurcation, and the bifurcation diagram is as in Figure 

6(b). Once IApp is larger than the bifurcation value, there 

is only one equilibrium which is an unstable focus, and 

the system has a limit cycle (see Figure 7(b) where IApp 

= 15). 

 

The system may also go through an Andronov-Hopf 

bifurcation when IApp increases. For example, when I = 

15, ϵ = 8, V1 = −30, V2 = −20, V3 = 50, and all other 

parameters coincide with parameter set 2. The system 

has only one equilibrium: a stable focus corresponding 

to the resting state (see Figure 7(c)). When IApp is 

increased, the stable focus loses its stability, a limit 

cycle exists (see Figure 7(d)), and the model exhibits 

spiking behavior. 

 

From the theory of dynamical systems [53], spiking is a 

sequitur to either a saddle-node bifurcation or an 

Andronov-Hopf bifurcation results in a neuron with 

Type 2 dynamics as was found in the numerically 

generated f/I curves of Figure 5. 

 

5. Discussion 

 

The realistic mathematical modeling of brainstem 

neurons, beyond that provided by extremely simplified 

models such as the leaky integrate and fire (or 

Lapicque)  

 

 

 

 

 

 

Lapicque) model [49], is useful for investigating the 

responses of these cells to their complex array of 

synaptic and other input and to construct and analyze 

complex networks involving these cells and those in 

other centers such as the hippocampus, frontal cortex 

and hypothalamus. 

 

5.1 LC NA neurons 

 

These neurons innervate widespread targets 

throughout the central nervous system and play a 

fundamental role in response to threats and stressors. 

Persistent stress leads to an amplified response in LC 

neurons which may underlay the occurrence of 

pathological anxiety [54]. Interestingly the number 

of efferent signals from LC neurons exceeds the 

number of afferent inputs. In a study of rhesus 

macaques [55], LC neurons displayed a transient 

activation when initiating an action and when 

exerting force. These findings were relevant to the 

involvement of the noradrenergic system in 

pathologies such as Parkinson’s disease and 

depression, where actions are impaired. In another 

recent study of the importance of LC neurons in 

models of prodromal Parkinson’s disease [56], 

increases were found in the autonomous pacemaker 

frequency of LC neurons, accompanied by changes 

in the magnitude of the after hyperpolarization. 

 

There have been several mathematical models of 

locus coeruleus neurons per se, which include a few 

ionic channels ([57], abstract only) or many ionic 

channels, including the usual sodium and potassium, 

high and low threshold calcium currents, transient 

potassium IA, persistent sodium, leak and 

hyperpolarization-activated cation current Ih ([27,28, 

58]. Noteworthy is the omission of IA in the model 

of [28] and its inclusion in [27] and [58]. Also, a 

persistent sodium current is included in [27] and [28] 

but not in [58]. 

 

Despite such uncertainties in the mechanisms 

involved in pacemaker activity in LC neurons, some 

of these works have included synaptic input and gap-

junction inputs from neighboring LC neurons. The 

pioneering article of De Carvalho et al. [27] 

addressed the mechanisms of morphine addiction. It 

included several biochemical reactions involving 

cAMP, µ-opioid receptors, morphine, G-protein, 

AC, CREB and Fos. Tuckwell [59] contains an                    

…. 
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unpublished summary of previous LC modeling and 

a review of LC neuron anatomy and physiology. 

Brown et al. [60] employed Rose-Hindmarsh model 

neurons to study a network of LC neurons, but there 

have not appeared any plausible simplified models 

for these cells per se. Thus the two-component 

models considered in this article may provide a 

starting point for investigating, for example, the 

effects of synaptic inputs on LC firing. 

 

5.2  DRN SE neurons 

 

These neurons also innervate widespread targets in 

the brain, including the cerebral cortex, striatum, 

amygdala, hypothalamus, substantia nigra and 

ventral tegmental area. They also target a broad set 

of inputs from within and exterior to the DRN - see 

Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to their role in functions such as sleep-

wake cycles, feeding behavior and mood, the 

serotonergic neurons of the DRN are involved in 

many cognitive functions. It is of great interest that 

the DRN serotonergic neurons and those of the 

dopamine reward system receive common inputs 

which point to a DRN role in reward processing - see 

[61] and references therein. Such involvement has 

been investigated in monkeys with single-unit 

recording [61], which indicated that DRN neurons 

responded to both the reward-predicting stimulus 

and the reward itself. In contrast, dopamine neurons 

predominantly responded only to the reward-

predicting stimulus. Further, some DRN neurons 

respond to large and small rewards in distinction to 

dopamine neurons which tend to be excited only by 

large rewards. 

 

 

 

 

 

 

 

In [62], an extensive modeling and experimental 

study of DRN neurons and networks containing 

them were carried out. The DRN neurons were 

described by generalized integrate and fire models, 

which required only a few parameters that could be 

estimated accurately. Such model neurons, whose 

spike trains are temporally inhomogeneous Poisson 

processes, were used to study networks of DRN 

serotonergic neurons and GABAergic neurons. A 

key finding was that the serotonergic neurons 

encoded the derivatives of their inputs. 

 

For serotonergic neurons of the dorsal raphe nucleus, 

there has been only one detailed model as described 

in the introduction [30]. Note that although there are 

no reports of persistent NaV 1.6 or 1.7 type currents, 

there is evidence of long-term inactivation of the 

classical NaV 1.1-1.3 type channel [63]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some authors have addressed serotonin release 

quantitatively and included the effects of 

antidepressants but without an explicit model for SE 

cell spiking [64]. Wong-Lin et al. [65] used a 

quadratic integrate and fire model for spiking DRN 

SE neurons in a network of such cells along with 

inhibitory neurons. The model is not vastly different 

from the model in this article, except that the reset 

mechanism after spikes is artificial. In related work, 

Cano-Colino et al. [66,67] have modeled the 

influence of serotonin on networks of excitatory and 

inhibitory cells in spatial working memory. More 

recently, in a similar vein, Maia and Cano-Colino 

[68] have made an interesting study of serotonergic 

modulation of the strength of attractors in the 

orbitofrontal cortex and related this to the occurrence 

of OCD. 

 

 

 

 

 

 

Table 4: Receptors on DRN SE neurons and adjacent presynaptic terminals 

 

Symbol Ligand Symbol Ligand 

D2 Dopamine GR Cortisosterone 

ACH-N (Nicotonic) Acetylcholine α1 Noradrenaline 

α2 Noradrenaline Glycine Glycine 

AMPA Glutamate NMDA Glutamate 

5-HT1A Serotonin OX-R1, OX-R2 Orexin 

CRF-R1, CRF-R2 CRF H-R1, H-R2 Histamine 

Κ opioids (morphine) µ opioids 

CB1 Substance P GABAA GABA 

GABAB GABA NPS Neuropeptide S 

MCH-1 Melanocortin 5-HT1B Serotonin 
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6. Concluding remarks 

 

Principal brainstem neurons, particularly 

serotonergic cells of the dorsal raphe nucleus and 

noradrenergic cells of the locus coeruleus, are of 

great importance in the functioning of many 

neuronal populations throughout cortical and 

subcortical structures. Of note is the modulatory role 

the firing of neurons in these brainstem nuclei have 

on neurons of the prefrontal cortex, including the 

orbitofrontal cortex and hippocampus. These latter 

structures have been strongly implicated in various 

pathologies, including depression and OCD. 

Lanfumey et al. [12] contain a comprehensive 

summary of many of the biological processes 

influenced by serotonin, including those originating 

from serotonergic neurons of the DRN. Modeling 

networks involving serotonergic and noradrenergic 

afferents requires plausible models for the spiking 

activity of the principal SE and NA cells. Whereas 

detailed models of such activity are now available, 

their application to many thousands of cells has the 

disadvantage of leading to very large computation 

time and large memory requirements, so the 

simplified models described in the present article 

may provide useful approximating components for 

such complex computing tasks. 
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